

Operating Instructions

Fronius Tauro 50-3 Fronius Tauro ECO 50-3 Fronius Tauro ECO 99-3 Fronius Tauro ECO 100-3

PL Instrukcja obsługi

Spis treści

Przenisy heznieczeństwa	6
Obiogniania da walezzáwale bazaioazaństwa	0 6
	0
Mammeli ata anania	0
warunki otoczenia	[
Wykwalifikowany personel	7
Srodki bezpieczeństwa w miejscu ustawienia	7
Dane dotyczące poziomu emisji hałasu	7
Środki zapewniające kompatybilność elektromagnetyczną	8
Bezpieczeństwo danych	8
Prawa autorskie	8
Uziemienie ochronne (PE)	8
Konserwacia	
Informacia agálna	0
	9
Opis urządzenia	11
Opis urządzenia	11
Łączenie łańcuchowe AC (ang. AC Daisy Chaining)	11
Bezpieczniki łańcucha	11
Fronius Solar.web	
Komunikacia lokalna	17
Ochrona osób i urzadzeń	<u>+</u> 0 1 /·
Bozpieczoństwo	14
Malazáuli estracoueze i tebliczke znamienowe ne urzedzeniu	14
wskazowki ostrzegawcze i tabliczka znamionowa na urządzeniu	14
WSD (Wired Shut Down)	15
Centralna ochrona sieci i instalacji	15
RCMU	15
Ochrona przeciwprzepięciowa	16
Ochrona przeciwprzepięciowa SPD	16
AFCI — zabezpieczenie przed łukiem elektrycznym (ArcGuard)	16
Stan bezpieczny	17
Liżytkowanie zgodne z przeznaczeniem	7 18
Użytkowanie zgodne z przeznaczeniem	18
Destanowienie detwerzege instalegii fotowelteieznei	10
	10
	19
Zasada działania	19
Chłodzenie falownika przez wymuszony obieg powietrza	19
Redukcja mocy znamionowej	19
Elementy obsługi oraz przyłącza	20
Elementy obsługi i wskaźniki	20
Przyłącza PV — Tauro 50-3-D (direct)	20
Przyłącza PV — Tauro Eco 50-3-D (direct)	21
Przyłacza PV — Tauro 50-3-D (30A fuses)	<u>-</u> 1 01
Przyłącza PV - Tauro Eco EC-Z-D (ZOA fucce)	21
Przytącza I V - Tauro Eco 20.3 D (300 Tuses)	21
Przytącza PV - Tauro Eco 99-3-D / 100-3-D (direct, opcja 20 A)	22
Przyłącza PV — Tauro Eco 99-3-D / 100-3-D (direct, opcja 30 A)	22
Przyłącza PV — pre-combined	22
Opcja blokady rozłącznika prądu stałego	23
Możliwość zamontowania komponentów firm trzecich	23
Obszar komunikacji danych w falowniku	23
Sekcja wymiany danych	24
Wewnetrzne schematyczne okablowanie weiść/wviść	
Funkcje przycisków i wskazania statusu diodami świecacymi	26
Instalacia i uruchamianie	20
	-3
Informacje ogotne	31
Kompatybilnosc komponentow systemu	31
wybor miejsca montazu i pozycji montazowej	32
Wybór miejsca montażu falownika	32

Pozycja montażowa	
Fransport	
Transport za pomocą żurawia	
Transport za pomocą wózka widłowego lub podnośnikowego	
Montaż falownika	
Dobór elementów mocujących	
Wymiary uchwytu naściennego	
Nontaż falownika na ścianie	
Montaż falownika na stelażach Floor Racks	
Przyłaczenie falownika do sieci publicznei (pradu przemiennego)	
Monitorowanie sieci	
Sekcia przyłaczy pradu przemiennego	
Podłaczanie kabli aluminiowych	
Dozwolone kable	
Maksymalne zabezpieczenie po stronie pradu przemiennego	
Zmiana zakresu przekrojów przewodów w przypadku zacisków typu V	
Dodatkowe wprowadzenie kabla do uziemienia	
Bezpieczeństwo	
Otwieranie falownika	
Wyłaczanie opcji rozłacznika pradu przemiennego	
Podłaczenie falownika do sięci nublicznej — Singlecore	
Podłączenie falownika do sięci publicznej – Multicore	
Podłączenie falownika do sięci publicznej – Piatricore	•••••
Podłączanie przewodu wyposażonego w końcówke kablowa	•••••
Podłaczanie kabla solarnego do falownika	•••••
Beznieczeństwo	•••••
Informacia ogálna o modułach fotowoltajcznych	•••••
	•••••
Zabaznia zania produ stałago pro combined	
Dravide device electronic readeries are free free free free free free free	······
Przykładowa skrzynka rozdzieleza Fronius Tauro ECO 50-3-F / 99-3-F / 100-3-F	·
Przyktadowa skrzynka rozuzielicza Fronius Tauro 50-3-P	•••••
Podziat tancucnow modutow solarnych w wariancie direct	•••••
	•••••
Ostona wtyczki MC4	•••••
Podłączanie kabla PV — pre-combined	•••••
Podłączanie przewodu wyposażonego w koncowkę kablową	••••••
Zamykanie i włączanie falownika	
Podłączanie kabla transmisji danych	•••••
Punkty Modbus	
Kable dopuszczone w sekcji transmisji danych	
Więcej niż jeden falownik w jednej sieci	•••••
Układanie kabli transmisji danych	
WSD (Wired Shut Down)	
Pierwsze uruchomienie	
Pierwsze uruchomienie falownika	
Prezentacja modułu monitorowania instalacji firmy Fronius (Pilot)	
Instalacja z poziomu aplikacji	
Instalacja z poziomu przeglądarki internetowej	
Odłączyć falownik od zasilania i ponownie włączyć	
Odłączyć falownik od zasilania i ponownie włączyć	
awienia — interfejs użytkownika falownika	
Jstawienia użytkownika	
Logowanie użytkownika	
Wybór jezyka	
Konfiguracia urzadzenia	
Komponenty	
Funkcie i weiścia/wyiścia	
Funkcje i wejścia/wyjścia Edytor EVU - AUS - Demand Response Modes (DRM)	

Falownik	
System	
Informacje ogólne	
Aktualizacja	
Kreator uruchamiania	
Przywracanie ustawień fabrycznych	
Dziennik zdarzeń	
Informacja	
Menedżer licencji	
Wsparcie	
Komunikacja	
Sieć	
Modbus	
Zdalne sterowanie	
Fronius Solar API	
Internet Services	
Bezpieczeństwo i wymagania dotyczące sieci	
Konfiguracja krajowa	
Ograniczenie wprowadzania energii do sieci	
WE/WY zarządzania mocą	
Schemat podłączenia — 4 przekaźniki	
Ustawienia zarządzaniem mocy WE/WY — 4 przekaźniki	
Schemat podłączenia — 3 przekaźniki	
Ustawienia WE/WY zarządzania mocą — 3 przekaźniki	
Schemat podłączenia — 2 przekaźniki	
Ustawienia WE/WY zarządzania mocą — 2 przekaźniki	
Schemat podłączenia — 1 przekaźnik	
Ustawienia WE/WY zarządzania mocą — 1 przekaźnik	
Załącznik	97
Komunikaty statusu i usuwanie	
Komunikaty statusu	
Dane techniczne	
Tauro 50-3-D / 50-3-P	
Tauro Eco 50-3-D / 50-3-P	
Tauro Eco 99-3-D / 99-3-P	
Tauro Eco 100-3-D7 100-3-P	
WLAN	
Zinte groweny replace nik nuclu stala go	
Zintegrowany roztącznik prądu statego	
	II2
VVLAIN	112
Awaria Sieui	112
Fronius SOS	II3 117
Fabruczna gwarancja Eropius	IIG 117
litylizacia	011

Przepisy bezpieczeństwa

Objaśnienie do wskazówek bezpieczeństwa

NIEBEZPIECZEŃSTWO!

Oznacza sytuację potencjalnie niebezpieczną.

 Jeśli nie zostaną podjęte odpowiednie środki ostrożności, skutkiem mogą być najcięższe obrażenia ciała lub śmierć.

≜ OSTROŻNIE!

Oznacza sytuację potencjalnie szkodliwą.

 Jeśli nie zostaną podjęte odpowiednie środki ostrożności, skutkiem mogą być okaleczenia lub straty materialne.

WSKAZÓWKA!

Oznacza możliwość pogorszonych rezultatów pracy i uszkodzeń wyposażenia.

Widząc jeden z symboli wymienionych w rozdziale "Przepisy dotyczące bezpieczeństwa", należy zachować szczególną ostrożność.

Informacje ogólne

Urządzenie zbudowano zgodnie z najnowszym stanem wiedzy technicznej i uznanymi zasadami bezpieczeństwa technicznego. Nieumiejętne lub nieprawidłowe użycie stwarza niebezpieczeństwo:

- odniesienia obrażeń lub utraty życia przez użytkownika lub osoby trzecie,
 - uszkodzenia urządzenia oraz innych dóbr materialnych użytkownika.

Wszystkie osoby zajmujące się uruchamianiem i utrzymywaniem sprawności technicznej urządzenia muszą

- posiadać odpowiednie kwalifikacje,
- dysponować wiedzą w zakresie obsługi instalacji elektrycznych oraz
- zapoznać się z tą instrukcją obsługi i dokładnie jej przestrzegać.

Jako uzupełnienie do instrukcji obsługi obowiązują ogólne oraz miejscowe wymogi przepisów BHP i ochrony środowiska.

Wszystkie wskazówki dotyczące bezpieczeństwa i ostrzeżenia umieszczone na urządzeniu należy

- utrzymywać w czytelnym stanie;
- chronić przed uszkodzeniami;
- nie usuwać ich;
- pilnować, aby nie były przykrywane, zaklejane ani zamalowywane.

Używać urządzenia tylko wtedy, gdy wszystkie zabezpieczenia są w pełni sprawne. Jeśli zabezpieczenia nie są w pełni sprawne, występuje niebezpieczeństwo:

- odniesienia obrażeń lub utraty życia przez użytkownika lub osoby trzecie,
- uszkodzenia urządzenia oraz innych dóbr materialnych użytkownika.

Przed włączeniem urządzenia zlecić autoryzowanemu serwisowi naprawę wadliwych urządzeń zabezpieczających.

Nigdy nie obchodzić ani nie wyłączać zabezpieczeń.

	Umiejscowienie poszczególnych instrukcji bezpieczeństwa i ostrzeżeń na urządzeniu jest opisane w rozdziale instrukcji obsługi "Ostrzeżenia na urządze- niu".	
	Usterki wpływające na bezpieczeństwo użytkowania usuwać przed włączeniem urządzenia.	
Warunki otocze- nia	Eksploatacja lub magazynowanie urządzenia poza podanym obszarem jest trakto- wana jako użytkowanie niezgodne z przeznaczeniem. Za wynikłe z tego powodu szkody producent urządzenia nie ponosi odpowiedzialności.	
Wykwalifikowa- ny personel	Informacje serwisowe zawarte w tej instrukcji obsługi są przeznaczone jedynie dla wykwalifikowanych pracowników. Porażenie prądem elektrycznym może spowo- dować śmierć. Nie wolno wykonywać innych czynności niż te wymienione w doku- mentacji. Obowiązuje to również w przypadku, gdy użytkownik posiada odpowied- nie kwalifikacje.	
	Wszystkie kable i przewody muszą być kompletne, nieuszkodzone, zaizolowane i o odpowiednich parametrach. Luźne połączenia, przepalone, uszkodzone lub nie- odpowiednie kable i przewody niezwłocznie naprawić w autoryzowanym serwisie.	
	Naprawy zlecać wyłącznie autoryzowanym serwisom.	
	Części obcego pochodzenia nie gwarantują bowiem, że wykonano je i skonstru- owano zgodnie z wymogami dotyczącymi bezpieczeństwa i odporności na ob- ciążenia. Stosować wyłącznie oryginalne części zamienne (obowiązuje również dla części znormalizowanych).	
	Wprowadzanie wszelkich zmian w zakresie budowy urządzenia bez zgody produ- centa jest zabronione.	
	Elementy wykazujące zużycie należy niezwłocznie wymieniać.	
Środki bezpie- czeństwa w miej- scu ustawienia	W przypadku instalacji urządzeń wyposażonych w otwory powietrza chłodzącego należy zagwarantować, że powietrze chłodzące będzie mogło swobodnie wpływać i wypływać przez szczeliny wentylacyjne. Urządzenie należy eksploatować wyłącznie zgodnie z informacjami o stopniu ochrony IP znajdującymi się na ta- bliczce znamionowej urządzenia.	
Dane dotyczące poziomu emisji hałasu	Maksymalny poziom ciśnienia akustycznego falownika podano w sekcji Dane techniczne .	
	Chłodzenie urządzenia jest realizowane przez elektroniczną regulację temperatu- ry tak cicho, jak to tylko możliwe i jest zależne od wydajności, temperatury oto- czenia, stopnia zabrudzenia urządzenia itp.	
	Podanie wartości emisji związanej z danym stanowiskiem roboczym jest niemożli- we, ponieważ rzeczywisty poziom ciśnienia akustycznego występujący w danym miejscu jest w dużym stopniu zależny od sytuacji montażowej, jakości sieci, ścian otaczających urządzenie i ogólnych właściwości pomieszczenia.	

Środki zapew- niające kompaty- bilność elektro- magnetyczną	W szczególnych przypadkach, mimo przestrzegania wartości granicznych emisji wymaganych przez normy, w obszarze stosowania zgodnego z przeznaczeniem mogą wystąpić zakłócenia (np. gdy w pobliżu miejsca ustawienia znajdują się urządzenia wrażliwe na zakłócenia lub gdy miejsce ustawienia znajduje się w po- bliżu odbiorników radiowych lub telewizyjnych). W takim przypadku użytkownik jest zobowiązany do powzięcia środków w celu zapobieżenia tym zakłóceniom.
Bezpieczeństwo danych	Za zabezpieczenie danych o zmianach w zakresie ustawień fabrycznych odpowia- da użytkownik. W wypadku skasowania ustawień osobistych użytkownika produ- cent nie ponosi odpowiedzialności.
Prawa autorskie	Wszelkie prawa autorskie w odniesieniu do niniejszej instrukcji obsługi należą do producenta.
	Tekst oraz ilustracje odpowiadają stanowi technicznemu w momencie oddania in- strukcji do druku. Zastrzega się możliwość wprowadzenia zmian. Treść instrukcji obsługi nie może być podstawą do roszczenia jakichkolwiek praw ze strony na- bywcy. Będziemy wdzięczni za udzielanie wszelkich wskazówek i informacji o błędach znajdujących się w instrukcji obsługi.
Uziemienie ochronne (PE)	Połączenie pewnego punktu w urządzeniu, systemie lub instalacji z uziemieniem w celu ochrony przed porażeniem prądem w przypadku zwarcia. Wykonanie przyłącza PE podczas montażu falownika Tauro jest obowiązkowe, ponieważ jest to urządzenie o klasie ochronności 1. Podczas podłączania przewodu PE należy uważać, aby był on zabezpieczony przed nieumyślnym odłączeniem. Należy prze- strzegać wszystkich instrukcji wyszczególnionych w rozdziale "Podłączenie falow- nika do sieci publicznej (strona AC)", włącznie z zastosowaniem podkładek, kleju do połączeń gwintowanych i nakrętek dokręconych wskazanym momentem obro- towym.
	Jeśli stosowane są uchwyty odciążające, należy uważać, aby w przypadku awarii przewód ochronny został odłączony jako ostatni. Podłączany przewód ochronny musi spełniać wymagania obowiązujących krajowych przepisów dotyczących mini- malnej powierzchni przekroju. Ponadto zgodnie z normą produktową IEC 62109-1 powierzchnia przekroju przewodu PE musi wynosić co najmniej połowę powierzchni przekroju przewodów fazowych, ponieważ fazy (L1 / L2 / L3) muszą być podłączone za pomocą przewodów o powierzchni przekroju co najmniej 35 mm² (50 kW) lub 70 mm² (99,99 / 100 kW).
Konserwacja	Falowniki Tauro są zasadniczo bezobsługowe. Jeżeli mimo to falownik poddano czynnościom konserwacyjnym, jak np. czyszczeniu lub wymianie komponentów, musi się to odbyć w porozumieniu z technikiem serwisowym przeszkolonym przez firmę Fronius. Producent nie ponosi odpowiedzialności za szkody, które powstaną wskutek niewłaściwego użytkowania.

Informacje ogólne

Opis urządzenia

Opis urządzenia

Falownik przekształca prąd stały generowany przez moduły solarne na prąd przemienny. Prąd przemienny zasila publiczną sieć zasilającą synchronicznie do napięcia sieciowego.

Falownik został zaprojektowany do stosowania wyłącznie w instalacjach PV podłączonych do sieci. Nie jest możliwe generowanie prądu niezależnie od publicznej sieci energetycznej.

Dzięki swojej konstrukcji i zasadzie działania falownik zapewnia maksymalny poziom bezpieczeństwa podczas montażu i eksploatacji.

Falownik automatycznie monitoruje publiczną sieć zasilającą. Przy parametrach sieci odbiegających od normy falownik natychmiast wstrzymuje pracę i odcina zasilanie sieci zasilającej (np. przy odłączeniu sieci, przerwaniu obwodu itp.). Monitorowanie sieci odbywa się przez monitorowanie napięcia, monitorowanie częstotliwości i monitorowanie synchronizacji falownika.

Łączenie łańcuchowe AC (ang. AC Daisy Chaining)

W przypadku wersji falownika "AC Daisy Chain" przewód prądu przemiennego można przeprowadzić bezpośrednio z jednego falownika do drugiego. W ten sposób da się szybko połączyć ze sobą kilka falowników Tauro aż do uzyskania mocy wyjściowej maks. 200 kW.

Minimalną powierzchnię przekroju przewodu wyznacza wartość znamionowa bezpiecznika w przyłączu sieciowym. Zawsze można użyć przewodu o większej powierzchni przekroju. Należy kierować się obowiązującymi normami krajowymi.

BezpiecznikiDotyczy tylko urządzeń Fronius typu Tauro 50-3-D / Eco 50-3-D / Eco 99-3-D /
łańcuchaŁańcuchaEco 100-3-D (direct):

Dzięki zastosowaniu bezpieczników łańcucha w modelu Fronius Tauro moduły solarne są dodatkowo zabezpieczone.

Dla zabezpieczenia modułów solarnych decydujący jest maksymalny prąd zwarciowy I_{SC} , maksymalny prąd zwrotny I_R lub podanie maksymalnej wartości zabezpieczenia w karcie danych technicznych danego modułu solarnego.

Przestrzegać krajowych przepisów dotyczących bezpieczników. Elektromonter jest odpowiedzialny za dobór odpowiednich bezpieczników łańcucha.

Instrukcje wymiany bezpieczników łańcucha znajdują się w rozdziale **Wymień** bezpieczniki łańcucha na stronie **60**.

50-3-D F1.1 - F3.7

Eco 50-3-D 30A fuses F1.1 - F2.5

50-3-D / Eco 99-3-D / Eco 100-3-D 30A fuses F1.1 - F3.5

Fronius Solar.web

Fronius Solar.web lub Fronius Solar.web Premium umożliwia właścicielowi albo instalatorowi łatwy monitoring i analizę zachowania instalacji PV. Po odpowiedniej konfiguracji falownik przesyła dane, jak np. moc, zyski, zużycie i bilans energetyczny do platformy Fronius Solar.web. Dodatkowe informacje dostępne w sekcji **Solar.web — Monitoring i analiza**.

Konfigurację przeprowadza się w Kreatorze uruchamiania — patrz rozdział **Instalacja z poziomu aplikacji** na stronie **69** lub **Instalacja z poziomu przeglądarki internetowej** na stronie **70**.

Warunki konfiguracji:

- Połączenie internetowe (pobieranie: min. 512 kB/s, wysyłanie: min. 256 kB/s)*.
- Konto użytkownika na platformie **solarweb.com**.
- Zakończona konfiguracja w Kreatorze uruchamiania.
- * Dane nie mają żadnej gwarancji poprawności działania. Wysoki stopień błędów transmisji, wahania sygnału odbiorczego lub zerwania transmisji mogą ujemni wpłynąć na transmisję danych. Firma Fronius zaleca przetestowanie na miejscu połączenia internetowego pod kątem spełnienia wymogów minimalnych.

Komunikacja lo-	Falownik można znaleźć za pomocą protokołu Multicast DNS (mDNS). Zaleca się
kalna	wyszukiwanie falownika po przypisanej nazwie hosta.

Następujące dane można pobrać za pośrednictwem mDNS:

- NominalPower
- Systemname
- DeviceSerialNumber
- SoftwareBundleVersion

Ochrona osób i urządzeń

Bezpieczeństwo

NIEBEZPIECZEŃSTWO!

Niebezpieczeństwo wskutek błędów obsługi i nieprawidłowego wykonywania prac.

Skutkiem mogą być poważne uszczerbki na zdrowiu i straty materialne.

- Ze wszystkich funkcji opisanych w tym dokumencie mogą korzystać tylko przeszkoleni pracownicy wykwalifikowani.
- Przeczytać i zrozumieć ten dokument.
- Przeczytać i zrozumieć wszystkie instrukcje obsługi komponentów systemu, w szczególności przepisy dotyczące bezpieczeństwa.

NIEBEZPIECZEŃSTWO!

Niebezpieczeństwo spowodowane przez pola elektromagnetyczne. W trakcie eksploatacji powstają pola elektromagnetyczne.

Wywierają one wpływ na zdrowie ludzi, np.: mogą negatywnie wpływać na osoby posiadające rozrusznik pracy serca.

 Nie przebywać przez dłuższy czas w odległości mniejszej niż 20 cm od falownika.

Wskazówki ostrzegawcze i tabliczka znamionowa na urządzeniu

Na falowniku i w jego wnętrzu znajdują się wskazówki ostrzegawcze oraz symbole bezpieczeństwa. Zabronione jest usuwanie lub zamalowywanie wskazówek ostrzegawczych i symboli bezpieczeństwa. Wskazówki oraz symbole ostrzegają przed nieprawidłową obsługą, która mogłaby skutkować poważnymi obrażeniami ciała i powodować straty materialne.

Na tabliczce znamionowej na samym dole jest wydrukowany 4-cyfrowy kod (coded production date), z którego można wywnioskować datę produkcji. Po odjęciu wartości 11 od dwóch pierwszych cyfr uzyskuje się rok produkcji.

Dwie ostatnie cyfry to tydzień kalendarzowy, w którym urządzenie zostało wyprodukowane.

Przykład: Wartość na tabliczce znamionowej = **3205 32** - 11 = 21 → rok produkcji 2021 **05** = tydzień kalendarzowy 05

Symbole na tabliczce znamionowej:

C Oznaczenie CE — potwierdza przestrzeganie właściwych dyrektyw i rozporządzeń UE.

Oznaczenie UKCA — potwierdza przestrzeganie właściwych dyrektyw i rozporządzeń Zjednoczonego Królestwa Wielkiej Brytanii i Irlandii Północnej.

Oznaczenie WEEE — zgodnie z Dyrektywą Europejską i prawem krajowym, zużyte urządzenia elektryczne i elektroniczne trzeba gromadzić osobno i doprowadzać do ponownego przetworzenia bezpiecznego dla środowiska.

Oznaczenie RCM — sprawdzono pod kątem zgodności z wymogami Australii i Nowej Zelandii.

Oznaczenie ICASA — sprawdzono pod kątem zgodności z wymogami Independent Communications Authority of South Africa.

Oznaczenie CMIM — sprawdzono pod kątem zgodności z wymogami IMANOR dotyczącymi przepisów wwozowych i przestrzegania norm marokańskich.

Symbole bezpieczeństwa:

Niebezpieczeństwo odniesienia poważnych obrażeń ciała i poniesienia strat materialnych w wyniku nieprawidłowej obsługi.

Z opisanych funkcji można korzystać dopiero po przeczytaniu w całości ze zrozumieniem następujących dokumentów:

- tej instrukcji obsługi;
- wszystkich instrukcji obsługi komponentów systemu instalacji PV, w szczególności przepisów dotyczących bezpieczeństwa.

Niebezpieczne napięcie elektryczne.

Przed otwarciem urządzenia zaczekać, aż kondensatory się rozładują!

Tekst ostrzeżeń:

OSTRZEŻENIE!

Porażenie elektryczne może spowodować śmierć. Przed otwarciem urządzenia należy odseparować je od strony wejścia i wyjścia, aby na wejściach i wyjściach nie występowało napięcie.

WSD (Wired Shut Down)	Odłączenie przewodowe WSD przerywa wprowadzanie energii do sieci przez fa- lownik, jeśli zadziałało urządzenie wyzwalające (wyłącznik, np. wyłącznik awaryjny lub styk sygnalizatora pożarowego).	
	W razie awarii falownika (Slave) nastąpi jego zmostkowanie i podtrzymanie pracy pozostałych falowników. Jeżeli nastąpi awaria drugiego falownika (Slave) lub fa- lownika (Master), nastąpi przerwanie pracy całego łańcucha WSD.	
	Instalacja patrz WSD (Wired Shut Down) na stronie 67 .	
Centralna ochro- na sieci i instala- cji	Falownik umożliwia zastosowanie zintegrowanego przekaźnika AC jako wyłączni- ka sprzęgającego w połączeniu z centralną ochroną sieci i instalacji (zgodnie z normą VDE-AR-N 4105:2018:11 §6.4.1). W tym celu w łańcuch WSD należy wbudować urządzenie wyzwalające (włącznik) zgodnie z opisem umieszczonym w rozdziale "WSD (Wired Shut Down)".	
RCMU	Falownik wyposażono w układ monitorujący prąd upływu (RCMU = Residual Cur- rent Monitoring Unit) zgodny z IEC 62109-2 i IEC63112.	

Monitoruje on pojawianie się prądów upływu z modułu fotowoltaicznego do wyjścia AC i odłącza falownik od sieci w przypadku pojawienia się niedozwolonego prądu upływu.

Ochrona przeciwprzepięciowa Falownik od strony prądu przemiennego i prądu stałego jest wyposażony w zintegrowaną ochronę przeciwprzepięciową zgodnie z normą IEC 62109-2. Ochrona przeciwprzepięciowa zabezpiecza instalację przed uszkodzeniami na skutek przepięcia.

Ochrona przeciwprzepięciowa SPD

Ochrona przeciwprzepięciowa (Surge Protective Device — SPD) zabezpiecza przed chwilowymi przepięciami i odprowadza prądy udarowe (np. uderzenie pioruna). Bazując na całej koncepcji ochrony odgromowej, urządzenie SPD przyczynia się do ochrony komponentów systemu PV.

0

T1

Po uaktywnieniu ochrony przeciwprzepięciowej kolor wskaźnika zmienia się z zielonego na czerwony (wskaźnik mechaniczny).

Zadziałanie SPD może być sygnalizowane za pomocą wskaźnika cyfrowego. Procedura ustawiania tej funkcji jest opisana w pliku PDF "SPD Auslösung / Temporary SPD Triggering" dostępnym na stronach dotyczących serwisu i pomocy technicznej w witrynie www.fronius.com

WAŻNE!

Po ustawieniu opisanej powyżej funkcji falownik reaguje także na przerwanie lub uszkodzenie 2-biegunowego kabla sygnalizacyjnego ochrony przeciwprzepięciowej.

AFCI — zabezpieczenie przed łukiem elektrycznym (Arc-Guard)

Wyposażenie dodatkowe montowane fabrycznie.

AFCI (Arc Fault Circuit Interrupter) zabezpiecza przed pojawieniem się zwarcia łukowego, a w węższym znaczeniu jest zabezpieczeniem chroniącym przed usterkami styków. Układ elektroniczny AFCI analizuje zakłócenia charakterystyki prądu i napięcia, a po wykryciu usterki styku wyłącza obwód elektryczny. Zapobiega to przegrzewaniu w miejscu słabego styku, a przez to ewentualnemu pożarowi.

WAŻNE!

Aktywna elektronika modułu fotowoltaicznego może zakłócić działanie funkcji ArcGuard. Firma Fronius nie gwarantuje prawidłowego działania funkcji Fronius ArcGuard w połączeniu z aktywną elektroniką modułu fotowoltaicznego.

⚠ OSTROŻNIE!

Niebezpieczeństwo spowodowane przez wadliwe lub nieprawidłowo wykonane instalacje DC.

Niebezpieczeństwo uszkodzenia i w konsekwencji pożaru instalacji PV wskutek niedozwolonych obciążeń termicznych, jakie mogą wystąpić w przypadku pojawienia się łuku elektrycznego.

- Sprawdzić, czy połączenia wtykowe są sprawne.
- Naprawić braki w izolacji.
- Wykonać czynności przyłączeniowe zgodnie z podanymi informacjami.

WAŻNE!

Firma Fronius nie pokrywa kosztów przestojów produkcji, kosztów instalatorów

itp. w związku z wykryciem łuku elektrycznego i jego następstwami. Firma Fronius nie ponosi odpowiedzialności za szkody powstałe pomimo zintegrowanego zabezpieczenia przed łukiem elektrycznym (np. w wyniku działania równoległego łuku elektrycznego).

Automatyczne ponowne załączenie

Do ponownego uruchomienia zabezpieczenia przed łukiem elektrycznym nie są wymagane żadne ręczne czynności, jeśli przed wznowieniem pracy zapewniona jest przerwa co najmniej 5 minut.

Po piątej przerwie w ciągu 24 godzin zabezpieczenie przed łukiem elektrycznym musi zostać zresetowane ręcznie, aby włączyło się ponownie. Następnie zabezpieczenie przed łukiem elektrycznym może powrócić do automatycznego trybu ponownego załączenia.

Stan bezpieczny W przypadku zadziałania jednego z poniższych urządzeń zabezpieczających falownik przechodzi w stan bezpieczny:

- WSD
- Pomiar rezystancji izolacji
- RCMU oraz
- AFCI

W stanie bezpiecznym falownik nie podaje już prądu i zostaje odłączony od sieci poprzez rozwarcie styków przekaźników AC.

Użytkowanie zgodne z przeznaczeniem

Użytkowanie zgodne z prze- znaczeniem	 Falownik fotowoltaiczny jest przeznaczony wyłącznie do przekształcania prądu stałego z modułów fotowoltaicznych na prąd przemienny oraz do zasilania nim publicznej sieci zasilającej. Za użytkowanie niezgodne z przeznaczeniem uważa się: użytkowanie inne lub wykraczające poza podane; modyfikacje falownika, które nie są wyraźnie zalecane przez firmę Fronius; montaż podzespołów, które nie są wyraźnie zalecane lub dystrybuowane przez firmę Fronius. Producent nie odpowiada za powstałe w ten sposób szkody. Gwarancja traci ważność. 	
	Użytkowanie zgodne z przeznaczeniem oznacza również przestrzeganie wszyst- kich wskazówek zawartych w instrukcji obsługi.	
Postanowienia dotyczące insta- lacji fotowolta- icznej	Falownik jest zaprojektowany wyłącznie do podłączenia i eksploatacji z modułami solarnymi. Niedopuszczalne jest zastosowanie z innymi generatorami prądu stałego (np. ge- neratorami wiatrowymi).	
	Podczas projektowania instalacji fotowoltaicznej należy zwrócić uwagę na to, aby wszystkie podzespoły instalacji fotowoltaicznej były obsługiwane wyłącznie w do- puszczalnym zakresie eksploatacji.	
	Należy uwzględnić wszystkie działania zapewniające długotrwałe zachowanie właściwości modułu solarnego, które są zalecane przez jego producenta.	

Działanie falownika jest w pełni zautomatyzowane. Gdy tylko po wschodzie słońca moduły solarne udostępnią wystarczającą ilość energii, falownik rozpoczyna sprawdzanie instalacji PV (pomiar izolacji) oraz sieci (napięcie sieciowe i częstotliwość sieci). Jeżeli wszystkie wartości mieszczą się w granicach normy, następuje automatyczne przełączenie na sieć i uruchomienie trybu wprowadzania energii do sieci.

Falownik działa w taki sposób, aby z modułów solarnych była odbierana maksymalna możliwa moc. Tę funkcję określa się mianem "Maximum Power Point Tracking" (MPPT). W przypadku zacienienia modułów solarnych, przeważająca część maksymalnej mocy lokalnej (LMPP) instalacji PV może być nadal pozyskiwana przez funkcję "Dynamic Peak Manager".

Gdy nastaje zmierzch i podaż energii nie wystarcza do zasilania sieci, falownik całkowicie rozłącza połączenie układów elektronicznych mocy z siecią i wstrzymuje pracę systemu. Wszystkie ustawienia i zapamiętane dane pozostają zachowane.

Chłodzenie fa-	Chłodzenie falownika jest realizowane przez wymuszony obieg powietrza za po-
lownika przez	mocą wentylatora sterowanego temperaturą. Zassane od przedniej strony powie-
wymuszony	trze jest przeprowadzone przez zamknięty kanał przez radiator prądu przemien-
obieg powietrza	nego i stałego, a następnie bezpośrednio nad cewkami indukcyjnymi i odprowa-
	ozane.
	- $ -$

Zamknięty kanał powietrzny powoduje, że układy elektroniczne nie mają kontaktu z powietrzem zewnętrznym. W ten sposób w dużym stopniu unika się zanieczyszczenia obszaru układów elektronicznych.

Prędkość obrotowa wentylatora oraz temperatura falownika są monitorowane.

Wentylatory falownika o regulowanej prędkości obrotowej i łożyskowaniu kulkowemu zapewniają:

- optymalne chłodzenie falownika;
- chłodniejsze elementy falownika, a tym samym jego dłuższą żywotność;
- możliwie najmniejsze zużycie energii;
- wysoką moc wyjściową także w górnych zakresach temperatur falownika.

Redukcja mocy
znamionowejJeżeli temperatura falownika jest zbyt wysoka, falownik automatycznie dławi ak-
tualną moc wyjściową, aby się zabezpieczyć. Przyczyną zbyt wysokiej temperatu-
ry urządzenia może być wysoka temperatura otoczenia lub niewystarczające od-
prowadzanie ciepła (np. przy zabudowie w kontenerach bez wystarczającego od-
prowadzania ciepła).Redukcja mocy znamionowej powoduje zdławienie mocy falownika do zakresu,
w którym nie będzie przekroczona dopuszczalna temperatura.

Przekroczenie maksymalnej temperatury powoduje przejście falownika do stanu bezpiecznego i wznowienie pracy w trybie wprowadzania energii do sieci dopiero po ostygnięciu urządzenia.

Elementy obsługi oraz przyłącza

Elementy obsługi i wskaźniki

(1) Rozłącznik prądu stałego Rozłącza połączenie elektryczne między modułami solarnymi a falownikiem. W zależności od typu urządzenia są w nim wbudowane 2 lub 3 rozłączniki prądu stałego. Rozłączniki prądu stałego można zabezpieczyć kłódką przed włączeniem. (2) Opcja rozłącznika prądu przemiennego Opcjonalny rozłącznik prądu przemiennego przerywa połączenie falownika z siecią (3) Funkcja przycisków Więcej informacji o funkcji przycisków zawiera punkt Funkcje przycisków i wskazania statusu diodami świecącymi (4) Dioda świecąca wskazania statusu Więcej informacji o diodzie wskazania statusu zawiera punkt Funkcje przycisków i wskazania statusu diodami

świecącymi

Przyłącza PV -Tauro 50-3-D (direct)

Przyłącza PV — Tauro Eco 50-3-D (30A fuses) Przyłącza PV — Tauro Eco 99-3-D / 100-3-D (direct, opcja 20 A)

22

Opcja blokady rozłącznika prądu stałego

Za pomocą opcjonalnie dostępnej blokady rozłącznika prądu stałego można zabezpieczyć falownik przed niepożądanym wyłączeniem.

Możliwość zamontowania komponentów firm trzecich

Powyżej sekcji przyłączy prądu stałego znajduje się miejsce do zamontowania komponentów firm trzecich. Na szynie DIN można zamontować komponenty o maksymalnej szerokości 14,5 cm (8 TE). Te komponenty muszą wykazywać odporność na temperatury w zakresie od -40°C do +85.

Obszar komunikacji danych w falowniku. Obszar komunikacji danych (płytka drukowana Pilot) znajduje się powyżej przyłączy DC w falowniku.

Sekcja wymiany danych

Zacisk przyłączeniowy Modbus	Zacisk przyłączeniowy Push-in dla in- stalacji Modbus O, Modbus 1, 12 V i GND (Ground). Do zacisku przyłączeniowego Modbus podłączane są komponenty w celu umożliwienia wymiany danych. Wejścia MO i M1 mogą zostać wybrane dowolnie. Dopuszczalna liczba punktów sieci Modbus na wejście to maks. 4, patrz rozdział Punkty Mod- bus na stronie 64 .
WSD (Wired Shut Down) Switch	Określa falownik jako urządzenie nadrzędne WSD lub Slave WSD. Położenie 1: urządzenie nadrzędne WSD Położenie 0: Slave WSD
Przełącznik Modbus 0 (MB0)	Włącza/wyłącza terminator Modbus O (MB0). Położenie 1: terminator wł. (ustawie- nie fabryczne) Położenie 0: terminator wył.
Przełącznik Modbus 1 (MB1)	Włącza/wyłącza terminator Modbus 1 (MB1). Położenie 1: terminator wł. (ustawie- nie fabryczne) Położenie 0: terminator wył.
🖑 Czujnik optyczny	Do obsługi falownika. Patrz rozdział Funkcje przycisków i wskazania sta- tusu diodami świecącymi na stronie 26.
ᅙ Dioda świecąca komunikacji	Wskazuje stan połączenia falownika.
⁽¹⁾ Dioda świecąca stanu pracy	Wskazuje stan roboczy falownika.

LAN 1	Przyłącze Ethernet do transmisji da- nych (np. router WiFi, sieć domowa lub do uruchamiania za pomocą lapto- pa — patrz rozdział Instalacja z po- ziomu przeglądarki internetowej na stronie 70).
LAN 2	Zarezerwowany dla przyszłych funkcji. Aby uniknąć usterek, stosować tylko LAN 1.
Zacisk przyłączeniowy WSD	Zacisk przyłączeniowy Push-in instala- cji WSD. Patrz rozdział WSD (Wired Shut Down) " na stronie 67 .
Zacisk przyłączeniowy IO	Zacisk przyłączeniowy Push-in cyfro- wych wejść/wyjść. Patrz rozdział Ka- ble dopuszczone w sekcji transmisji danych na stronie 64 . Oznaczenia (RGO, CLO, 1/5, 2/6, 3/7, 4/8) odnoszą się do funkcji Demand Response Mode, patrz rozdział Edy- tor EVU - AUS - Demand Response Modes (DRM) na stronie 77 .

Wewnętrzne schematyczne okablowanie wejść/wyjść

Na styku V+ / GND istnieje możliwość zasilania napięciem 12,5–24 V (+ maks. 20 %) z zewnętrznego zasilacza. Wówczas wyjścia IO 0–5 można użytkować z zasilaniem zewnętrznym. Na jedno wyjście może przypadać pobór maksymalnie 1 A, przy czym maksymalnie dozwolona łączna wartość to 3 A. Zabezpieczenie musi być zewnętrzne.

≜ OSTROŻNIE!

Niebezpieczeństwo stwarzane przez zamianę biegunów zacisków przyłączeniowych wskutek niewłaściwego podłączenia zasilaczy zewnętrznych. Skutkiem mogą być poważne straty materialne w falowniku.

- Przed podłączeniem zewnętrznego zasilacza sprawdzić jego polaryzację odpowiednim miernikiem.
- Podłączyć kable do wyjść V+/GND zgodnie z biegunowością.

WAŻNE!

W razie przekroczenia mocy łącznej (6 W) falownik wyłącza wszystkie zewnętrzne źródła zasilania.

(1) Ogranicznik prądu

	1 raz⊕= otwarto punkt dostępowy WLAN (AP).
J. J.	ᅙ miga w kolorze niebieskim
	2 razy🖫= uaktywniono Wi-Fi Protected Setup (WPS).
J. J. S.	ᅙ miga w kolorze zielonym
	3 sekundy⊕(maks. 6 sekund) = zakończone zgłoszenie serwisowe.
	ပ် świeci w kolorze żółtym

Dioda świecąca wskazania statusu		
		Falownik pracuje bezawaryjnie.
<u></u>		ပ် świeci w kolorze zielonym
		Falownik uruchamia się.
 		${}^{igodoldsymbol{ imes}}$ miga w kolorze zielonym
ڻ س		Falownik jest w trybie czuwania, nie pracuje (np. w nocy, gdy nie wprowadza energii do sieci) lub nie jest skonfigu- rowany.
		ပ် świeci w kolorze żółtym
		Falownik sygnalizuje stan niekrytyczny.
ወ		ပ် miga w kolorze żółtym
<u>ل</u>		Falownik sygnalizuje stan krytyczny i nie odbywa się wprowadzanie energii do sieci.
	qm	ပ် świeci w kolorze czerwonym
<u>ل</u>		Połączenie sieciowe nawiązano przez WPS. 2 razy&= tryb wyszukiwania WPS.
		ᅙ miga w kolorze zielonym
Ċ.	<u>م</u>	Połączenie sieciowe nawiązano przez WLAN AP. 1 raz®= tryb wyszukiwania WLAN AP (aktywny 30 mi- nut).
		ᅙ miga w kolorze niebieskim
		Połączenie sieciowe nie jest skonfigurowane.
Ċ	ر ب ب	🗟 świeci w kolorze żółtym
		Falownik pracuje bezawaryjnie, wyświetla się błąd sieci.
Ċ		🗟 świeci w kolorze czerwonym
		Falownik przeprowadza aktualizację.
ወ) F	ပ် / ᅙ miga w kolorze niebieskim

Instalacja i uruchamianie

Informacje ogólne

Kompatybilność komponentów systemu Wszystkie elementy zamontowane w instalacji PV muszą być kompatybilne i odznaczać się niezbędnymi możliwościami konfiguracji. Zamontowane elementy nie mogą ograniczać zakresu funkcji instalacji PV ani zakłócać jej działania.

WSKAZÓWKA!

Ryzyko wskutek komponentów całkowicie lub częściowo niekompatybilnych z instalacją PV.

Niekompatybilne komponenty mogą ograniczać zakres funkcji instalacji PV oraz/ albo zakłócać jej działanie.

- W instalacji PV mogą być montowane tylko komponenty zalecane przez producenta.
- Przed montażem komponentów, które nie są wyraźnie zalecane, skontaktować się z producentem w celu ustalenia ich kompatybilności.

Wybór miejsca montażu i pozycji montażowej

Wybór miejsca montażu falownika Przy wybieraniu miejsca montażu falownika należy przestrzegać następujących kryteriów:

Instalacja wyłącznie na stałym, niepalnym podłożu

Maks. zakres temperatur otoczenia: -40°C / +65°C * z wbudowaną opcją "rozłącznik prądu przemiennego": -30°C / +65°C

Wilgotność względna powietrza: 0–100%

W przypadku montażu falownika w szafie sterowniczej lub podobnych pomieszczeniach zamkniętych należy zadbać o odpowiednie odprowadzanie ciepła przez wentylację wymuszoną.

Jeżeli falownik ma być zamontowany na ścianie zewnętrznej obory, należy zachować odstęp między falownikiem a otworami wentylacyjnymi i konstrukcyjnymi budynku, wynoszący co najmniej 2 m we wszystkich kierunkach.

Dozwolone są następujące podłoża montażowe:

- montaż naścienny (ściany z blachy falistej (szyny montażowe), ściany ceglane, ściany betonowe lub inne niepalne podłoża o odpowiedniej nośności);
- montaż na słupie (na szynach montażowych za modułami fotowoltaicznymi, bezpośrednio na stojaku PV);
- płaskie dachy (jeżeli jest to dach foliowy, trzeba pamiętać, żeby folie spełniały wymogi ochrony przeciwpożarowej i odpowiednio do tego nie były łatwopalne; przestrzegać przepisów krajowych);
- zadaszenia parkingów (nie ponad głową).

Po montażu falownika w każdej sytuacji musi być zapewnione swobodne dojście do rozłączników prądu stałego.

Falownik jest przeznaczony do montażu wewnątrz pomieszczeń.

Falownik jest przeznaczony do montażu na zewnątrz.

Ze względu na stopień ochrony IP 65 falownik jest odporny na strumień wody padający ze wszystkich kierunków i można go używać również w wilgotnym otoczeniu.

Falownik jest przeznaczony do montażu na zewnątrz.

Aby utrzymać temperaturę falownika na możliwie najniższym poziomie, lepiej nie wystawiać falownika na bezpośrednie działanie promieniowania słonecznego. Falownik najlepiej zamontować w osłoniętym miejscu, na przykład pod modułami solarnymi lub pod okapem dachu.

WAŻNE! Nie montować ani nie eksploatować falownika na wysokości powyżej 4000 m n.p.m.

Falownika nie należy montować:

w obszarze zaciągania amoniaku, żrących oparów, zakwaszonego lub zasolonego powietrza (na przykład składy nawozów, otwory wentylacyjne obór, instalacje chemiczne, garbarnie itp.).

Z powodu hałasu wytwarzanego przez falownik w określonych stanach pracy nie jest zalecany montaż w bezpośrednim sąsiedztwie pomieszczeń mieszkalnych.

Falownika nie należy montować w:

- pomieszczeniach o podwyższonym ryzyku wypadków z udziałem zwierząt hodowlanych (konie, bydło, owce, trzoda chlewna itp.);
- stajniach i przyległych pomieszczeniach;
- magazynach i składach na siano, słomę, trociny, pasze dla zwierząt, nawozy itp.;
- pomieszczeniach, w których przechowywane i przetwarzane są owoce, warzywa i winorośle;
- pomieszczeniach do przygotowania zbóż, pasz zielonych i dodatków paszowych.

Falownik jest wykonany w wersji pyłoszczelnej (IP 65). W obszarach o silnym zapyleniu pył może jednak osadzać się na powierzchniach chłodzących, co może znacznie obniżyć odporność na wysoką temperaturę. W takim przypadku konieczne jest regularne czyszczenie. Dlatego niezalecany jest montaż w pomieszczeniach i otoczeniu o silnym zapyleniu.

Pozycja montażowa

Falownik jest przystosowany do pionowego montażu na pionowej ścianie. W przypadku montażu pionowego nie można posłużyć się opcjonalnymi stelażami Floor Racks.

W przypadku montażu w pozycji poziomej falownik powinien być nachylony pod kątem co najmniej 3°, aby umożliwić odpływ wody. Wskazany jest montaż opcjonalnych stelaży Floor Racks. Stelaże Floor Racks wolno stosować wyłącznie w położeniu montażowym przy nachyleniu 0–45°.

Falownik nie jest przystosowany do montażu na powierzchni skośnej.

Falownika nie należy montować na ukośnej powierzchni z przyłączami skierowanymi do góry.

Falownika nie należy montować w pozycji skośnej na pionowej ścianie lub słupie.

Falownika nie należy montować w pozycji poziomej na pionowej ścianie lub kolumnie.

Falownika nie należy montować na pionowej ścianie lub słupie z przyłączami skierowanymi do góry.

Falownika nie należy montować w pozycji podwieszonej z przyłączami skierowanymi do góry.

Falownika nie należy montować w pozycji podwieszonej z przyłączami skierowanymi do dołu.

Falownika nie należy montować na suficie.

Transport

Transport za pomocą żurawia

⚠ NIEBEZPIECZEŃSTWO!

Niebezpieczeństwo powstania poważnych obrażeń ciała i strat materialnych spowodowanych przez przewracające się lub spadające przedmioty. Podczas transportu za pomocą żurawia:

- Łańcuchy lub liny zaczepiać wyłącznie w punktach zawieszenia
- Łańcuchy lub liny zaczepiać zawsze w obu punktach zawieszenia

Transport za pomocą wózka widłowego lub podnośnikowego

⚠ NIEBEZPIECZEŃSTWO!

Przewracające się lub spadające urządzenia mogą stwarzać zagrożenie dla życia.

- Podczas transportu falownika za pomocą wózka widłowego lub wózka podnośnego należy zabezpieczyć urządzenie przed upadkiem.
- Nie wolno wykonywać żadnych gwałtownych zmian kierunku, hamowania lub przyspieszania.
Montaż falownika

Dobór ele-
mentów mo-
cującychW zależności od podłoża, użyć odpowiednich elementów mocujących oraz prze-
strzegać zalecenia dotyczącego wymiarów śrub do uchwytu montażowego.
Monter jest sam odpowiedzialny za prawidłowy dobór elementów mocujących.

Wymiary uchwy- Wymiary uchwytu naściennego — wszystkie wartości w mm. **tu naściennego**

Montaż falownika na ścianie

Do mocowania falownika do uchwytu naściennego można używać tylko dołączonych w zestawie śrub.

Montaż falownika na stelażach Floor Racks

Zamocowanie falownika na poziomej powierzchni montażowej nie jest bezwzględnie konieczne, ale jest zalecane. W zależności od podłoża, do zamontowania stelaży Floor Racks na podłożu potrzebne są różnego rodzaju kołki i wkręty. Z tego powodu kołki i wkręty nie są objęte zakresem dostawy falownika. Za dobór odpowiednich kołków i wkrętów odpowiada instalator.

Zamontować falownik i stelaże Floor Racks przy użyciu odpowiednich materiałów montażowych na właściwej powierzchni

Nie wchodzić na urządzenie!

Przyłączenie falownika do sieci publicznej (prądu przemiennego)

Monitorowanie sieci	WAŻNE! Aby monitorowanie sieci działało optymalnie, opór wewnętrzny prze- wodów doprowadzonych do przyłączy prądu przemiennego musi być jak najmniej- szy.		
Sekcja przyłączy prądu przemien- nego	 WAŻNE! Do zacisków typu V wolno podłączać tylko niżej podane przewody: RE (okrągły — jednożyłowy), RM (okrągły — wielożyłowy), SE (sektorowy — jednożyłowy), SM (sektorowy — wielożyłowy), drobnożyłowe przewody stosować wyłącznie w połączeniu z okuciami kablowymi. 		

Przewody drobnożyłowe bez okuć kablowych wolno podłączać do trzpienia gwintowanego M10 przyłączy prądu przemiennego tylko przy użyciu odpowiedniej końcówki kablowej M10. Moment dokręcenia = 18 Nm

Przepust kablowy, wariant "Multicore"

Przepust kablowy, wariant "Singlecore"

Przy większych przepustach możliwe są następujące średnice zewnętrzne kabli:

16; 27,8; 36,2; 44,6; 53; 61,4 mm

Przez mały przepust (dławnica PG M32) można przeprowadzić kabel uziemienia o przekroju 10–25 mm.

Przepust kablowy wariant "AC Daisy Chain"

10 przepustów M32

Podłączanie ka-
bli aluminiowychDo przyłączy prądu przemiennego można też podłączyć przewody aluminiowe.

WSKAZÓWKA!

W przypadku podłączania przewodów aluminiowych:

- należy uwzględnić krajowe i międzynarodowe dyrektywy dotyczące podłączania przewodów aluminiowych,
- w celu zabezpieczenia skrętek aluminiowych przed utlenianiem nasmarować je przeznaczonym do tego smarem,
- > przestrzegać informacji podawanych przez producenta przewodów.

Dozwolone kable Odporność termiczna kabli prądu przemiennego w przypadku wariantu Pre-combined musi wynosić co najmniej 90°C.

> W przypadku zastosowania kabli niespełniających tego warunku użyć węża ochronnego (nr artykułu: 4,251,050) na przewodach fazowych (L1 / L2 / L3) i przewodzie neutralnym (N)! Uziemienie PE nie musi być zabezpieczone wężem ochronnym.

> Przy opcji AC Daisy Chain wszystkie fazy i przewód neutralny muszą być zabez-

pieczone wężem ochronnym. Tym samym przy opcji AC Daisy Chain potrzebne są dwa zestawy węży ochronnych.

Przyłącza prądu przemiennego

Zależnie od klasy mocy i wariantu przyłącza należy wybrać wystarczająco duże przekroje przewodów!

		1
Klasa mocy	Wariant przyłącza	Przekrój przewodu
	Singlecore / Multicore	35 - 240 mm ² *
Tauro 50-3 Tauro Eco 50-3	Opcjonalny rozłącznik prądu przemiennego	35 - 240 mm ² *
	Daisy Chain (bez rozłącznika prądu przemiennego)	35 - 240 mm ² *
	Singlecore / Multicore	70 - 240 mm ² *
Tauro Eco 99-3 Tauro Eco 100-3	Opcjonalny rozłącznik prądu przemiennego	70 - 240 mm ² *
	Daisy Chain (bez rozłącznika prądu przemiennego)	70 - 240 mm ² *

* Przekrój przewodu neutralnego można zmniejszyć do 25 mm², jeśli lokalne wytyczne lub normy nie stanowią inaczej.

Maksymalne zabezpieczenie po stronie prądu przemiennego

WSKAZÓWKA!

Stosowanie wyłącznika różnicowoprądowego nie jest obowiązkowe. Jeśli jednak jest on stosowany, musi to być wyłącznik różnicowoprądowy (RCD) typu B o prądzie zadziałania co najmniej 1000 mA.

WSKAZÓWKA!

Falownik może używać maksymalnie jednego bezpiecznika automatycznego 355 A.

	Tauro 50-3-D / 50-3-P	Tauro Eco 50-3-D / 50-3-P	Tauro Eco 99-3-P	Tauro Eco 99-3-D	Tauro Eco 100-3-P	Tauro Eco 100-3-D
Zalecane zabezpieczenie nadmiarowo- prądowe na wyjściu [A] w przypadku mocy wyjściowej 50 kW	80	80	-	-	_	-
Zalecane zabezpieczenie nadmiarowo- prądowe na wyjściu [A] w przypadku mocy wyjściowej 100 kW (przykład: Daisy Chaining)	160	160	160	160	160	160

	Tauro 50-3-D / 50-3-P	Tauro Eco 50-3-D / 50-3-P	Tauro Eco 99-3-P	Tauro Eco 99-3-D	Tauro Eco 100-3-P	Tauro Eco 100-3-D
Zalecane zabezpieczenie nadmiarowo- prądowe na wyjściu [A] w przypadku mocy wyjściowej 150 kW (przykład: Daisy Chaining)	250	250	250	250	250	250
Zalecane zabezpieczenie nadmiarowo- prądowe na wyjściu [A] w przypadku mocy wyjściowej 200 kW (przykład: Daisy Chaining)	355	355	355	355	355	355

Zmiana zakresu przekrojów przewodów w przypadku zacisków typu V Zakres przekrojów przewodów w przypadku zacisku typu V jest określony fabrycznie na 35–150 mm². Prosta przebudowa zacisku typu V pozwala na zmianę zakresu przekrojów przewodów na 185–240 mm².

Dodatkowe wprowadzenie kabla do uziemienia. Po prawej stronie w dolnej części obudowy można wykonać opcjonalny otwór do wprowadzenia dodatkowego kabla uziemienia.

≜ OSTROŻNIE!

Niebezpieczeństwo spowodowane przez wadliwe lub nieprawidłowo wykonane otwory.

Skutkiem mogą być urazy oczu i dłoni przez cząstki wyrzucone w powietrze i ostre krawędzie oraz uszkodzenia falownika.

- Podczas wiercenia nosić odpowiednie okulary ochronne.
- Do rozwiercania używać tylko wiertła stopniowego.
- Uważać, aby nie uszkodzić elementów we wnętrzu urządzenia (na przykład bloku przyłączy).
- Dostosować średnicę otworu do danego przyłącza.
- Otwory wygładzić odpowiednim narzędziem.
- Usunąć z falownika pozostałości po wierceniu.

Bezpieczeństwo

NIEBEZPIECZEŃSTWO!

Niebezpieczeństwo stwarzane przez napięcie sieciowe i napięcie prądu stałego z modułów solarnych.

Porażenie prądem elektrycznym może spowodować śmierć.

- Przed rozpoczęciem wszelkich prac przy połączeniach należy zadbać o to, aby obwody prądu przemiennego i prądu stałego przed falownikiem były pozbawione napięcia.
- Stałe połączenie z siecią zasilającą może wykonać wyłącznie autoryzowany elektroinstalator.

≜ OSTROŻNIE!

Niebezpieczeństwo uszkodzenia falownika wskutek nieprawidłowo dokręconych przyłączy przewodów.

Nieprawidłowo dokręcone przyłącza przewodów mogą doprowadzić do uszkodzeń termicznych falownika i, w konsekwencji, do wystąpienia pożarów.

W przypadku podłączania przewodów prądu stałego i przemiennego należy uważać, aby wszystkie przewody były dokręcone do przyłączy falownika podanym momentem obrotowym.

WAŻNE! Przyłącze PE musi dodatkowo spełniać podane w rozdziale "Przepisy dotyczące bezpieczeństwa" wymagania odnośnie do bezpiecznego podłączenia przewodu PE

Otwieranie falownika

Wyłączanie opcji rozłącznika prądu przemiennego

Podłączenie falownika do sieci publicznej — Singlecore Podczas podłączania należy uważać na prawidłową kolejność podłączania faz: PE, N, L1, L2 i L3.

Podłączenie falownika do sieci publicznej — Multicore Podczas podłączania należy uważać na prawidłową kolejność podłączania faz: PE, N, L1, L2 i L3.

Przykręcić z momentem obrotowym podanym przez producenta

Podłączenie falownika do sieci publicznej — Daisy Chain Podczas podłączania należy uważać na prawidłową kolejność podłączania faz: PE, N, L1, L2 i L3.

Podłączanie przewodu wyposażonego w końcówkę kablową Alternatywnie do podłączenia przewodów do zacisków V można podłączyć przewody wyposażone w końcówkę kablową do trzpienia gwintowanego M12 przyłączy.

Podłączanie kabla solarnego do falownika

Bezpieczeństwo

NIEBEZPIECZEŃSTWO!

Niebezpieczeństwo spowodowane napięciem sieciowym oraz napięciem prądu stałego z modułów solarnych wystawionych na działanie światła. Porażenie prądem elektrycznym może spowodować śmierć.

Porazenie prądem elektrycznym może spowodować smierc.

- Przed rozpoczęciem wszelkich prac przy połączeniach należy zadbać o to, aby obwody prądu przemiennego i prądu stałego przed falownikiem były pozbawione napięcia.
- Stałe połączenie z siecią publiczną może zostać wykonane wyłącznie przez koncesjonowanego instalatora.

NIEBEZPIECZEŃSTWO!

Niebezpieczeństwo porażenia prądem w wyniku nieprawidłowego podłączenia zacisków przyłączeniowych / połączeń wtykowych PV.

Porażenie prądem elektrycznym może spowodować śmierć.

Podczas podłączania wariantu D ("direct string") zwrócić uwagę, aby każdy biegun danego łańcucha przebiegał przez to samo wejście modułu PV, np.: "biegun + łańcuch 1 na wejściu PV 1.1+, a "biegun - łańcuch 1" na wejściu PV 1.1-

NIEBEZPIECZEŃSTWO!

Niebezpieczeństwo stwarzane przez napięcie prądu stałego. Bezpieczniki płytek drukowanych (100-3-D / 99-3-D) / bezpiecznik płytki drukowanej (50-3-D) i wszystkie elementy przed rozłącznikami prądu stałego znajdują się pod napięciem także przy wyłączonych rozłącznikach prądu stałego.

Porażenie prądem elektrycznym może spowodować śmierć.

Przed rozpoczęciem wszelkich prac przy połączeniach należy zadbać o to, aby obwody prądu przemiennego i prądu stałego przed falownikiem były pozbawione napięcia.

OSTROŻNIE!

Niebezpieczeństwo uszkodzenia falownika wskutek nieprawidłowo dokręconych zacisków przyłączeniowych.

Nieprawidłowo dokręcone zaciski przyłączeniowe mogą doprowadzić do uszkodzeń termicznych falownika i, w konsekwencji, do wybuchu pożaru.

W przypadku podłączania przewodów prądu stałego DC i przemiennego AC należy uważać, aby wszystkie zaciski przyłączeniowe były dokręcone podanym momentem dokręcającym.

OSTROŻNIE!

Niebezpieczeństwo uszkodzenia falownika wskutek nieprawidłowo dokręconych zacisków przyłączeniowych.

Nieprawidłowo dokręcone zaciski przyłączeniowe mogą doprowadzić do uszkodzeń termicznych falownika i, w konsekwencji, do wybuchu pożaru.

 W przypadku podłączania przewodów prądu stałego DC i przemiennego AC należy uważać, aby wszystkie zaciski przyłączeniowe były dokręcone podanym momentem dokręcającym.

<u> OSTROŻNIE!</u>

Niebezpieczeństwo uszkodzenia falownika wskutek podłączenia modułów solarnych niezgodnie z biegunowością.

Moduły solarne podłączone niezgodnie z biegunowością mogą spowodować uszkodzenia termiczne falownika.

 Zmierzyć przewody DC modułów solarnych i podłączyć do falownika z prawidłową biegunowością.

≜ OSTROŻNIE!

Niebezpieczeństwo uszkodzenia falownika wskutek przekroczenia maksymalnego prądu wejściowego poszczególnych łańcuchów.

Przekroczenie maksymalnego prądu wejściowego poszczególnych łańcuchów może spowodować uszkodzenia falownika.

- Przestrzegać maksymalnej wartości prądu wejściowego poszczególnych łańcuchów dla falownika, określonej w danych technicznych.
- Także przy stosowaniu wtyczek typu Y lub T nie wolno przekraczać maksymalnego prądu wejściowego.

Informacje ogólne o modułach fotowoltaicznych

Odpowiedni dobór modułów fotowoltaicznych i możliwie ekonomiczne wykorzystanie falownika wymagają uwzględnienia następujących punktów:

- Napięcie biegu jałowego modułów fotowoltaicznych wzrasta przy stałym nasłonecznieniu i spadającej temperaturze. Napięcie biegu jałowego nie może przekraczać maksymalnego dozwolonego napięcia w układzie. Napięcie trybu pracy jałowej przekraczające podane wartości prowadzi do zniszczenia falownika i unieważnienia gwarancji.
- Należy przestrzegać współczynników temperaturowych podanych na karcie danych modułu fotowoltaicznego.
- Dokładnych wartości potrzebnych przy doborze modułów fotowoltaicznych dostarczają specjalne programy obliczeniowe, na przykład Fronius Solar.creator.

WAŻNE!

Przed podłączeniem modułów fotowoltaicznych upewnić się, czy wartość napięcia dla modułów fotowoltaicznych, wyliczona na podstawie danych producenta modułów, odpowiada rzeczywistości.

WAŻNE!

Moduły fotowoltaiczne podłączone do falownika muszą spełniać normę IEC 61730 Class A.

WAŻNE!

Łańcuchów modułów fotowoltaicznych nie wolno uziemiać.

Dozwolone kable Odporność termiczna kabli prądu stałego musi wynosić co najmniej 90°C.

Przyłącza prądu stałego

W zależności od typu urządzenia wybrać wystarczająco duże przekroje kabli!

Klasa mocy	Typ urządzenia	Przekrój kabla	
	pre-combined	25–95 mm ²	
Tauro 50-3 / Eco 50-3 / Eco 99-3 / Eco 100-3	direct	2,5–10 mm² (patrz karta charakterysty- ki wtyczki)	

Zabezpieczenie prądu stałego pre-combined

OSTROŻNIE!

Niebezpieczeństwo uszkodzenia falownika wskutek nieprawidłowo zabezpieczonych przewodów PV.

Niezabezpieczone przewody PV w wariancie urządzenia "pre-combined" mogą spowodować uszkodzenia falownika.

 Przewody PV muszą być zabezpieczone w skrzynce zbiorczej przed falownikiem (wariant "pre-combined").

* Bezpiecznik prądu stałego opcjonalny zależnie od normy krajowej / rozłącznik prądu stałego opcjonalny / DC-SPD opcjonalny

ΡL

* Bezpiecznik prądu stałego opcjonalny zależnie od normy krajowej / rozłącznik prądu stałego opcjonalny / DC-SPD opcjonalny

Podział łańcuchów modułów solarnych w wariancie direct Istniejące łańcuchy modułów solarnych należy równomiernie podzielić na wejścia PV (PV1 / **PV2** / **PV3**) falownika.

Zacząć od nieparzystych wejść, a następnie zapełnić parzyste wejścia, aby podział przewodów był jak najbardziej równomierny, ponieważ to sprzyja żywotności bezpieczników, np.: (1.1, **2.1**, **3.1**, 1.3, **2.3**...)

Podłączanie kabla PV — wtyczka MC4

Podłączyć kabel PV modułów solarnych do wtyczki MC4 zgodnie z opisem

Nieużywane wtyczki MC4 w falowniku muszą być zasłonięte zaślepkami dostarczonymi z falownikiem.

Osłona wtyczki MC4

Na falowniku może być zamontowana blaszana osłona do ochrony wtyczki MC4. Blaszana osłona może zostać zamówiona jako wyposażenie dodatkowe wraz ze stelażami Floor Racks.

Podłączanie kabla PV — precombined

Łańcuchy modułów solarnych zebrane w jednej skrzynce prądu stałego muszą zostać zabezpieczone w skrzynce zbiorczej zgodnie z obowiązującymi przepisami na każdym łańcuchu!

Przed wykonaniem prac w sekcji przyłączy falownika należy odłączyć napięcie prądu stałego. Można to zrobić także w skrzynce zbiorczej prądu stałego.

Podłączanie przewodu wyposażonego w końcówkę kablową Alternatywnie do podłączenia przewodów do zacisków V można podłączyć przewody wyposażone w końcówkę kablową do trzpienia gwintowanego M12 przyłączy.

Wymień bezpieczniki łańcucha

<u>∧ OSTROŻNIE!</u>

Niebezpieczeństwo spowodowane przez uszkodzone bezpieczniki. Skutkiem mogą być pożary.

- Uszkodzone bezpieczniki wymieniać tylko na równorzędne.
- Nie zastępować uszkodzonych bezpieczników trzpieniami.

OSTROŻNIE!

Niebezpieczeństwo związane z nieprawidłowo dobranymi bezpiecznikami łańcucha

Nieprawidłowo dobrane bezpieczniki łańcucha mogą spowodować uszkodzenia falownika i podłączonych do niego elementów.

Dla wariantu D (direct) falownika Fronius Tauro należy stosować następujące bezpieczniki łańcucha:

- Maks. 10 A na łańcuch → można zastosować bezpiecznik 15 A gPV 1000 V (nr artykułu Fronius: 41,0007,0230 — bezpiecznik 15 1000 F PV 15 A)
- Maks. 14,5 A na łańcuch → wymagane zastosowanie bezpiecznika 20 A gPV 1000V (nr artykułu Fronius: 41,0007,0233 — bezpiecznik HL 20 A 1 KV szybki)
- Maks. 22 A na łańcuch → wymagane zastosowanie bezpiecznika 30 A gPV 1000 V (nr artykułu Fronius: 41,0007,0241 - bezpiecznik HL 30A 1KV szybki)

Wymiana bezpieczników:

Fronius Tauro 50-3-D łańcuch 1.1 - 3.7 / Fronius Tauro 50-3-D (bezpieczniki 30A) łańcuch 1.1 - 3.5 / Fronius Tauro Eco 50-3-D łańcuch 1.1 - 2.7 / Tauro Eco 50-3-D (bezpieczniki 30A) łańcuch 1.1 - 2.5 / Fronius Tauro Eco 99 / 100-3-D łańcuch 1.1 - 2.7 / Fronius Tauro Eco 99 / 100-3-D (bezpieczniki 30A) łańcuch 1.1 - 3.5 Sprawdzić wartości! Uszkodzone bezpieczniki wymieniać tylko na równorzędne.

Wymiana bezpieczników: Fronius Tauro Eco 99 / 100-3-D łańcuch 3.1–3.8 Sprawdzić wartości! Uszkodzone bezpieczniki wymieniać tylko na równorzędne.

Zamykanie i włączanie falownika

MIEBEZPIECZEŃSTWO!

Niebezpieczeństwo wskutek nieprawidłowego włączenia rozłącznika prądu stałego

Skutkiem mogą być poważne uszczerbki na zdrowiu i straty materialne.

- Wszystkie istniejące rozłączniki prądu stałego muszą zostać ustawione w pozycji ON (włączone) przed włączeniem połączenia AC.
- Pozycja rozłączników prądu stałego musi być zawsze zmieniana równocześnie (bezpośrednio po sobie).

Instrukcje otwierania punktu dostępowego WLAN za pomocą czujnika optycznego zawiera rozdział **Funkcje przycisków i wskazania statusu diodami świecącymi** na stronie **26**

Podłączanie kabla transmisji danych

Punkty Modbus Wejścia M0 i M1 mogą zostać wybrane dowolnie. Do zacisku przyłączeniowego Modbus na wejściach M0 i M1 można podłączyć maks. po 4 punkty sieci Modbus.

WAŻNE!

Jeżeli uaktywniono funkcję **"Sterowanie falownikiem przez protokół Modbus"** w sekcji menu **"Komunikacja" → "Modbus"**, nie można zainstalować punktów sieci Modbus. Wysyłanie i odbieranie danych w tym samym czasie nie jest możliwe.

Kable dopuszczone w sekcji transmisji danych Do zacisków przyłączeniowych falownika można podłączać kable o następującej budowie:

miedziane: okrągłe, jednożyłowe;

miedziane: okrągłe, drobnożyłowe.

Przyłącza WSD z zaciskiem przyłączeniowym Push-in							
Maks. od- ległość	Długość odizolo- wania	Jednożyłowe	Drob- nożyłowe	Drob- nożyłowe z okuciami kablowymi z kołnierzem	Drob- nożyłowe z okuciami kablowymi bez kołnie- rza	Zalecane kable	
100 m	10 mm	0,14–1,5 mm ²	0,14–1,5 mm ²	0,14–1 mm ²	0,14–1,5 mm ²	min. CAT 5 UTP	

Przyłącza Modbus z zaciskiem przyłączeniowym Push-in							
Maks. od- ległość	Długość odizolo- wania	Jednożyłowe	Drob- nożyłowe	Drob- nożyłowe z okuciami kablowymi z kołnierzem	Drob- nożyłowe z okuciami kablowymi bez kołnie- rza	Zalecane kable	
300 m	10 mm	0,14–1,5 mm ²	0,14–1,5 mm ²	0,14–1 mm ²	0,14–1,5 mm ²	min. CAT 5 STP	

Przyłącza IO z zaciskiem przyłączeniowym Push-in							
Maks. od- ległość	Długość odizolo- wania	Jednożyłowe	Drob- nożyłowe	Drob- nożyłowe z okuciami kablowymi z kołnierzem	Drob- nożyłowe z okuciami kablowymi bez kołnie- rza	Zalecane kable	
30 m	10 mm	0,14–1,5 mm ²	0,14–1,5 mm ²	0,14–1 mm ²	0,14–1,5 mm ²	Możliwe po- jedyncze przewody	

Przyłącza LAN

Firma Fronius zaleca zastosowanie kabli przynajmniej CAT 5 STP (Shielded Twisted Pair) i maksymalną odległość 100 m.

Więcej niż jeden falownik w jednej sieci

Okablowanie sieci IT falownika musi być wykonane w układzie gwiazdy. Muszą być spełnione wymagania dotyczące parametrów i maksymalnej długości kabli!

Układanie kabli transmisji danych

Warunkiem korzystania z Fronius Solar.web lub Modbus TCP jest możliwość nawiązania w dowolnym czasie połączenia LAN z siecią przez każdy z falowników Tauro.

WAŻNE! Przy wprowadzaniu do wnętrza falownika kabli transmisji danych należy przestrzegać następujących punktów:

- W zależności od liczby i przekroju wprowadzonych kabli transmisji danych usunąć odpowiednie zaślepki z wkładki uszczelniającej i wprowadzić kable transmisji danych.
- W wolne otwory wkładki uszczelniającej bezwzględnie włożyć odpowiednie zaślepki.

Wskazówka! Brak zaślepek lub ich nieprawidłowe włożenie nie pozwala zapewnić stopnia ochrony IP65.

3x Ø4,9-5,5mm (0.19-0.22inch)

3x Ø6,7-8,5mm (0.26-0.33inch)

2

Odkręcić nakrętkę złączkową uchwytu odciążającego i wypchnąć pierścień uszczelniający z zaślepkami od strony wnętrza urządzenia.

Rozszerzyć pierścień uszczelniający w miejscu, w którym trzeba wyjąć zaślepkę.

* Ruchem na boki wyciągnąć zaślepkę.

Przeprowadzić kabel transmisji danych najpierw przez nakrętkę złączkową uchwytu odciążającego, a następnie przez otwór w obudowie.

Włożyć pierścień uszczelniający między nakrętkę złączkową i otwór w obudowie. Wcisnąć kable transmisji danych w otwory uszczelki. Następnie wcisnąć uszczelkę aż do dolnej krawędzi uchwytu odciążającego.

Kabel w sekcji transmisji danych luźno zamocować opaską zaciskową i dokręcić nakrętkę złączkową momentem min. 2,5 – maks. 4 Nm.

WSD (Wired Shut Down)

WAŻNE!

Zacisk Push-in WSD w sekcji przyłączy falownika jest standardowo dostarczany ze zworką. W przypadku instalacji urządzenia wyzwalającego lub łańcucha WSD trzeba wyjąć zworkę.

W pierwszym falowniku z podłączonym urządzeniem wyzwalającym w łańcuchu WSD, przełącznik WSD trzeba przełączyć na położenie 1 (Master). W przypadku wszystkich pozostałych falowników przełącznik WSD jest ustawiony w położeniu 0 (Slave).

Maks. odstęp między dwoma urządzeniami: 100 m Maks. liczba urządzeń: 28

* Styk bezpotencjałowy urządzenia wyzwalającego (np. centralne zabezpieczenie NA). Jeśli jeden łańcuch WSD zawiera więcej styków bezpotencjałowych, muszą one być łączone szeregowo.

Pierwsze uruchomienie falownika W przypadku pierwszego uruchomienia falownika należy skonfigurować różne ustawienia w menu "Setup".

W razie przerwania konfiguracji przed jej zakończeniem, system nie zapisze wprowadzonych danych i ponownie wyświetli ekran początkowy z kreatorem instalacji. W razie przerwania wskutek np. awarii sieci energetycznej, system zapisze dane. Po przywróceniu zasilania z sieci energetycznej system wznowi uruchamianie od miejsca, w którym nastąpiła przerwa. W przypadku przerwania konfiguracji, falownik wprowadza do sieci moc maks. 500 W, a dioda świecąca stanu pracy miga żółtym światłem.

Konfigurację krajową można ustawić tylko w trakcie pierwszego uruchomienia falownika. Jeżeli istnieje konieczność zmiany konfiguracji krajowej po pierwszym uruchomieniu falownika, należy skontaktować się z instalatorem / działem pomocy technicznej.

Prezentacja modułu monitorowania instalacji firmy Fronius (Pilot)

Aby uprościć prezentację, pozycję montażową płytki drukowanej urządzenia Pilot (wyświetlacz LED) przedstawiono poniżej w poziomie.

Instalacja z poziomu aplikacji Do instalacji potrzebna jest aplikacja "Fronius Solar.start". W zależności od urządzenia końcowego użytego do instalacji, aplikacja jest dostępna na danej platformie.

3

Wybrać produkt, z którym ma nastąpić nawiązanie połączenia.

- Otworzyć punkt dostępowy, dotykając czujnika 1x ⊕ → dioda świecąca komunikacji miga w kolorze niebieskim.
- 4 Postępować zgodnie z instrukcjami kreatora instalacji i zakończyć ją.

5 Dodać komponenty systemu na platformie Fronius Solar.web i uruchomić instalację PV.

Niezależnie od siebie można użyć kreatora sieci i przeprowadzić konfigurację produktu. Do działania kreatora instalacji Fronius Solar.web potrzebne jest połączenie sieciowe.

Niezależnie od siebie można użyć kreatora sieci i przeprowadzić konfigurację produktu. Do działania kreatora instalacji Fronius Solar.web potrzebne jest połączenie sieciowe.

Odłączyć falownik od zasilania i ponownie włączyć.

Odłączyć falownik od zasilania i ponownie włączyć.

- 1. Ustawić bezpiecznik automatyczny w położeniu wyłączonym.
- Rozłącznik prądu stałego ustawić w pozycji "Wył.".

W celu ponownego uruchomienia falownika wykonać wcześniej wymienione czynności w odwrotnej kolejności.
Ustawienia — interfejs użytkownika falownika

Ustawienia użytkownika

1

2

Logowanie użyt-

kownika

W przeglądarce internetowej otworzyć interfejs użytkownika falownika.
W sekcji menu "Logowanie" zalogować się, podając nazwę użytkownika i hasło, albo w sekcji menu "Użytkownicy" kliknąć przycisk "Logowanie uży kownika" i zalogować się nazwą użytkownika i hasłem.
ŻNE!

WAŻNE!

Ustawienia w poszczególnych sekcjach menu można wprowadzać w zależności od uprawnień użytkownika.

1 W sekcji menu **"Użytkownicy"** kliknąć przycisk **"Język"** i wybrać język. Wybór języka

Konfiguracja urządzenia

Komponenty

Opcja **"Dodaj komponenty+"** umożliwia dodanie do systemu wszystkich zainstalowanych komponentów.

Generator fotowoltaiczny

Uaktywnić dany generator fotowoltaiczny i wprowadzić w odpowiednim polu podłączoną moc PV.

Licznik pierwotny

W celu zapewnienia bezawaryjnej współpracy z innymi generatorami energii konieczne jest zamontowanie urządzenia Fronius Smart Meter w punkcie zasilania. Falownik i inne generatory energii muszą być podłączone do sieci publicznej za pośrednictwem urządzenia Fronius Smart Meter.

Ustawienie to wpływa także na zachowanie falownika w nocy. Jeżeli ta funkcja zostanie wyłączona, falownik przełącza się na tryb czuwania, gdy tylko zabraknie mocy PV. Na wyświetlaczu pojawia się komunikat "Power low" ("Niska moc"). Falownik uruchamia się ponownie, gdy będzie dostępna wystarczająca moc PV. Po podłączeniu licznika należy skonfigurować pozycję.

W systemie można zainstalować wiele urządzeń Fronius Smart Meter. Dla każdego urządzenia Smart Meter trzeba ustawić odrębny adres.

Moc w watach podana przy licznikach generatorów jest sumą wszystkich liczników generatorów. Moc w watach podana dla liczników wtórnych jest sumą wszystkich liczników wtórnych.

Ohmpilot

Wyświetlane są wszystkie urządzenia Ohmpilot dostępne w systemie. Wybrać żądane urządzenia Ohmpilot i dodać je do systemu przyciskiem **"Dodaj"**.

FunkcjeZarządzanie obciążeniemi wejścia/wyjściaTutaj można wybrać do czterech styków do zarządzania obciążeniem. Dalsze
ustawienia zarządzania obciążeniem są dostępne w punkcie menu "Zarządzanie
obciążeniem".
Domyślnie: styk 1

AUS — Demand Response Mode (DRM)

Tutaj można ustawić styki dla sterowania za pośrednictwem DRM:

Mode (tryb)	Opis	Informacja	Styk do- myśln y
DRMo	Falownik odłącza się od sie- ci	Otwarcie przekaźnika sieci	
	REF GEN		RGO
	COM LOAD		CLO
		DRMO występuje w razie prze- rwania oraz zwarcia w przewo- dach REF GEN lub COM LO- AD. Albo w przypadku niepra- widłowej kombinacji DRM1– DRM8.	

WAŻNE!

Jeżeli aktywna jest funkcja "Demand Response Mode (DRM)" i brak sterowania DRM, falownik przechodzi w tryb czuwania.

Edytor EVU - AUS - Demand Response Modes (DRM)	Tutaj można wprowadzić wartość poboru i odbioru mocy pozornej dla konfiguracji krajowej urządzeń stosowanych w Australii.
Demand Respon- se Modes (DRM)	W tym miejscu można wprowadzić ilość pobieranej i oddawanej mocy pozornej na potrzeby australijskiej konfiguracji krajowej.
Falownik	"Wymuś tryb oczekiwania" Włączenie tej funkcji spowoduje przerwanie trybu wprowadzania energii do sieci przez falownik. Dzięki temu można wyłączyć falownik bezobciążeniowo, co oszczędza jego podzespoły. Ponowne uruchomienie falownika automatycznie wyłącza funkcję trybu oczekiwania.

"PV 1" i "PV 2"

Parametry	Zakres war- tości	Opis
"Tryb"	Wyłączony	Tracker punktu mocy maksymalnej jest wyłączony.
	Auto	Falownik wykorzystuje napięcie, dla które- go możliwe jest uzyskanie maksymalnie możliwej mocy trackera punktu mocy mak- symalnej.
	Stałe	Tracker punktu mocy maksymalnej korzy- sta z napięcia określonego w "UDC fix" .
"UDC fix"	80 - 530 V	Falownik wykorzystuje zadane na stałe na- pięcie, używane przez tracker punktu mo- cy maksymalnej.

Parametry	Zakres war- tości	Opis
"Dynamic Peak	Wyłączony	Funkcja jest wyłączona.
Manager"	Włączony	System kontroluje cały łańcuch modułów solarnych pod kątem potencjału optymali- zacji i określa najlepsze napięcie dla trybu wprowadzania energii do sieci.

"Sygnał zdalnego sterowania"

Sygnały zdalnego sterowania to sygnały wysyłane przez zakład energetyczny w celu włączania i wyłączania obciążeń sterowalnych. W zależności od sytuacji falownik może tłumić lub wzmacniać sygnały zdalnego sterowania. Poniższe ustawienia mogą temu w razie potrzeby przeciwdziałać.

Parametry	Zakres war- tości	Opis
"Redukcja	Wyłączony	Funkcja jest wyłączona.
wpływu"	Włączony	Funkcja jest włączona.
"Częstotliwość sygnału zdalne- go sterowania"	100 - 3000 Hz	Tu wprowadzić wartość częstotliwości za- daną przez zakład energetyczny.
"Indukcyjność sieci"	0,00001 - 0,00 5 H	Tu wprowadzić wartość zmierzoną w punk- cie zasilania.

"Przeciwdziałanie błędom wyzwolenia wyłącznika różnicowoprądowego/układu monitorującego prąd upływu"

(w przypadku użycia wyłącznika różnicowoprądowego 30 mA)

Parametry	Zakres war- tości	Opis
"Wyłączenie przed uaktyw- nieniem	WyłączenieOBrak działań zapobiegajrzed uaktyw-niom wskutek działaniaieniemniowego.	Brak działań zapobiegających wyzwole- niom wskutek działania prądu uszkodze- niowego.
wyłącznika różnico- woprądowego 30 mA"	1	Falownik wyłącza się po osiągnięciu prądu 15 mA, zanim zadziała wyłącznik różnico- woprądowy.

"Ostrzeżenie izol."

Parametry	Zakres war- tości	Opis
"Ostrzeżenie	Wyłączony	Ostrzeżenie dla izolacji jest wyłączone.
izol."	Włączony	Ostrzeżenie dla izolacji jest włączone. W razie usterki izolacji system wyśle ostrzeżenie.

Parametry	Zakres war- tości	Opis
"Tryb pomiaru izolacji"	Dokładne	Funkcja monitorowania izolacji ma naj- wyższą dokładność, a zmierzona wartość rezystancji izolacji wyświetla się w interfej- sie użytkownika falownika.
	Szybkie	Funkcja monitorowania izolacji ma mniejszą dokładność, co skraca czas po- miaru rezystancji izolacji, a zmierzona war- tość rezystancji izolacji nie wyświetla się w interfejsie użytkownika falownika.
"Wartość pro- gowa ostrzeżenia dla izolacji"	10 - 10 000 kΩ	W razie spadku poniżej tej wartości progo- wej, w interfejsie użytkownika falownika wyświetla się komunikat statusu 1083.

System

Informacje ogólne	 Ustawienia ogólne W polu wprowadzania "Nazwa instalacji" wprowadzić nazwę instalacji (maks. 30 znaków). Opcja "Synchronizuj czas automatycznie" włączona → wybrać opcje "Strefa czasowa obszaru" i "Strefa czasowa miejscowości". Nastąpi przejęcie daty i czasu z podanej strefy czasowej. Opcja "Synchronizuj czas automatycznie" wyłączona → wprowadzić wartości lub wybrać opcje "Data", "Czas", "Strefa czasowa obszaru" i "Strefa czasowa iniejscowości". Kliknąć przycisk "Zapisz".
Aktualizacja	 Wszystkie dostępne aktualizacje są udostępniane na stronie produktu oraz w sekcji "Wyszukiwanie plików do pobrania" pod adresem www.fronius.com . Aktualizacja oprogramowania sprzętowego Przeciągnąć plik oprogramowania sprzętowego do pola "Upuść plik tutaj" lub wybrać go, używając opcji "Wybierz plik". Rozpocznie się aktualizacja.
Kreator urucha- miania	Tutaj można wywołać kreatora uruchamiania, który przeprowadzi użytkownika przez wszystkie etapy procedury uruchamiania.
Przywracanie ustawień fa- brycznych	Wszystkie ustawienia Nastąpi zresetowanie wszystkich ustawień poza konfiguracją krajową. Zmiany w konfiguracji krajowej mogą wprowadzać wyłącznie upoważnieni pracownicy. Wszystkie ustawienia poza sieciowymi Nastąpi zresetowanie wszystkich ustawień konfiguracyjnych poza konfiguracją krajową i ustawieniami sieciowymi. Zmiany w konfiguracji krajowej mogą wprowa- dzać wyłącznie upoważnieni pracownicy.
Dziennik zdarzeń	 Bieżące zdarzenia Tutaj wyświetlane są wszystkie bieżące zdarzenia dotyczące podłączonych komponentów systemu. WAŻNE! W zależności od rodzaju zdarzenia trzeba potwierdzić je przyciskiem "haczyk", aby móc dalej pracować. Zarchiwizowane Tutaj wyświetlane są wszystkie zdarzenia dotyczące podłączonych komponentów systemu, które nie są już aktywne.

Informacja	W tym obszarze menu wyświetlane są wszystkie informacje dotyczące systemu i obecnych ustawień.				
	Zapis w formacie PDF				
	1 Kliknąć przycisk "Zapisz w formacie PDF".				
	Zaznaczyć "ptaszkiem" przycisk wyboru obok informacji lub wybrać wszystkie informacje przyciskiem "zaznacz wszystko".				
	3 Wprowadzić nazwę pliku w polu wprowadzania i kliknąć przycisk "Drukuj".				
	Nastąpi utworzenie i wyświetlenie pliku w formacie PDF.				
Menedżer licen- cji	W pliku licencji zapisano parametry wydajnościowe oraz zakres funkcji falownika. W przypadku wymiany falownika, modułu mocy albo sekcji wymiany danych trze- ba wymienić również plik licencji.				
	Licencionowanie online (zalecane):				
	Do tego potrzebne jest połączenie internetowe i zakończona konfiguracja Fronius Solar.web.				
	Zakończyć prace instalacyjne (patrz rozdział Pierwsze uruchomienie na stro- nie 69).				
	2 Nawiązać połączenie z interfejsem użytkownika falownika.				
	3 Wprowadzić numery seryjne i kody weryfikacyjne (VCode) urządzenia uszko- dzonego i zamiennego. Numer seryjny i VCode podano na tabliczce znamio- nowej falownika (patrz rozdział Wskazówki ostrzegawcze i tabliczka znamio- nowa na urządzeniu na stronie 14).				
	4 Kliknąć przycisk "Rozpocznij licencjonowanie online".				
	Pominąć pozycje menu "Warunki użytkowania" oraz "Ustawienia sieciowe", klikając przycisk "Dalej".				
	Rozpocznie się aktywacja licencji.				
	Licencjonowanie offline: W tym przypadku nie może być nawiązane połączenie internetowe. W przypadku licencjonowania offline z nawiązanym połączeniem internetowym plik licencji jest automatycznie wczytywany do falownika, co powoduje następujący błąd: "Licen- cja została już zainstalowana i można zakończyć działanie kreatora".				
	I Zakończyć prace instalacyjne (patrz rozdział Pierwsze uruchomienie na stro- nie 69).				
	2 Nawiązać połączenie z interfejsem użytkownika falownika.				
	Wprowadzić numery seryjne i kody weryfikacyjne (VCode) urządzenia uszko- dzonego i zamiennego. Numer seryjny i VCode podano na tabliczce znamio- nowej falownika (patrz rozdział Wskazówki ostrzegawcze i tabliczka znamio- nowa na urządzeniu na stronie 14).				
	4 Kliknąć przycisk "Rozpocznij licencjonowanie offline".				
	5 Klikając przycisk "Pobierz plik serwisowy" , pobrać plik serwisowy na urządze- nie końcowe.				
	6 Otworzyć stronę internetową licensemanager.solarweb.com i zalogować się, podając nazwę użytkownika i hasło.				
	Przeciągnąć plik serwisowy do pola "Przeciągnij tutaj plik serwisowy lub klik- nij w celu wczytania" albo go wczytać.				
	8 Nowo wygenerowany plik licencji pobrać na urządzenie końcowe przyciskiem "Pobierz plik licencji".				

Przejść do interfejsu użytkownika falownika i przeciągnąć plik licencji do pola "Upuść plik licencji tutaj" lub wybrać go przy użyciu opcji "Wybierz plik licencji".

Rozpocznie się aktywacja licencji.

Wsparcie

Aktywacja wsparcia użytkownika

I Kliknąć przycisk "Aktywuj wsparcie użytkownika".

Wsparcie użytkownika jest aktywne.

WAŻNE!

Funkcja wsparcia użytkownika umożliwia wprowadzanie ustawień falownika za pośrednictwem zabezpieczonego połączenia wyłącznie pomocy technicznej Fronius. Przycisk **"Zakończ dostęp do wsparcia użytkownika"** dezaktywuje dostęp.

Utwórz informację dla pomocy technicznej (dla pomocy technicznej Fronius)

Kliknąć przycisk "Utwórz informację dla działu wsparcia".

2

Nastąpi automatyczne pobranie pliku sdp.cry. W celu pobrania ręcznie kliknąć przycisk **"Pobierz informację dla działu wsparcia"**.

Plik sdp.cry jest zapisany w folderze "Downloads".

Uaktywnienie konserwacji zdalnej

I Kliknąć przycisk "Uaktywnij konserwację zdalną".

Tryb konserwacji zdalnej dla działu pomocy technicznej Fronius jest aktywny.

WAŻNE!

Konfiguracja zdalna za pośrednictwem zabezpieczonego połączenia umożliwia dostęp do falownika wyłącznie pomocy technicznej Fronius. Następuje przy tym przesłanie danych diagnostycznych zawierających informacje istotne dla usunięcia problemu. Uaktywnić konserwację zdalną tylko wtedy, gdy zażądał tego dział pomocy technicznej Fronius.

Sieć

Adresy serwera transmisji danych

Na wypadek użycia zapory sieciowej dla połączeń wychodzących, w celu umożliwienia transmisji danych trzeba zezwolić na korzystanie z następujących protokołów, adresów serwera i portów:

- Tcp fronius-se-iot.azure-devices.net:8883
- Tcp fronius-se-iot-telemetry.azure-devices.net:8883
- Tcp fronius-se-iot-telemetry.azure-devices.net:443
- Udp sera-gen24.fronius.com:1194 (213.33.117.120:1194)
- Tcp froniusseiot.blob.core.windows.net:443
- Tcp provisioning.solarweb.com:443
- Tcp cure-se.fronius.com:443
- Upd/Tcp 0.time.fronius.com:123

Przy korzystaniu z produktów FRITZ!Box konieczne jest skonfigurowanie nieograniczonego dostępu do Internetu. Wartość parametru DHCP Lease Time (ważność) nie może wynosić 0 (=bezterminowa).

LAN:

Nawiązywanie połączenia:

1 Wprowadzić nazwę hosta.

2 Wybrać rodzaj połączenia "automatyczne" lub "statyczne".

Jeżeli wybrano rodzaj połączenia **"statyczne"** — wprowadzić adres IP, maskę podsieci, DNS i bramę.

4 Kliknąć przycisk "Połącz".

Nastąpi nawiązanie połączenia. Po nawiązaniu połączenia należy skontrolować jego stan (patrz rozdział **"Internet Services**" na stronie **86**).

WLAN:

Nawiązanie połączenia przez WPS:

1 Kliknąć przycisk "Uaktywnij".

Uaktywnić funkcję WPS w routerze WiFi (patrz dokumentacja routera WiFi).

Nastąpi automatyczne nawiązanie połączenia. Po nawiązaniu połączenia należy skontrolować jego stan (patrz rozdział "Internet Services" na stronie 86).

Wybór sieci WLAN i połączenie:

Znalezione sieci zostaną wyświetlone na liście. Kliknięcie przycisku "Odśwież" 🗘 powoduje ponowne wyszukanie dostępnych sieci WiFi. Pole wprowadzania danych "Wyszukaj sieć" umożliwia dalsze ograniczenie listy wyboru.

1 Wybrać sieć z listy.

Wybrać rodzaj połączenia "automatyczne" lub "statyczne".

Jeżeli wybrano rodzaj połączenia **"automatyczne"** — wprowadzić nazwę hosta i hasło WiFi.

Jeżeli wybrano rodzaj połączenia "statyczne" — wprowadzić adres IP, maskę podsieci, DNS i bramę.

5 Kliknąć przycisk "Połącz".

Nastąpi nawiązanie połączenia. Po nawiązaniu połączenia należy skontrolować jego stan (patrz rozdział **"Internet Services**" na stronie **86**).

Punkt dostępowy:

Falownik służy za punkt dostępowy. Komputer lub urządzenie mobilne łączy się bezpośrednio z falownikiem. Nie ma możliwości połączenia z Internetem. W tym obszarze menu można nadać **"Nazwę sieci (SSID)"** i **"Klucz sieciowy (PSK)"**. Możliwe jest korzystanie równocześnie z połączenia za pośrednictwem WiFi i punktu dostępowego.

Modbus

Warunkiem korzystania z Modbus TCP lub połączenia z Fronius Solar.web jest bezpośrednie połączenie LAN każdego falownika z siecią.

Interfejs Modbus RTU 0 / 1

Jeśli jeden z interfejsów Modbus RTU jest ustawiony jako Slave, są dostępne następujące pola edycyjne:

"Prędkość transmisji"

Ustawienie wpływa na prędkość transmisji między poszczególnymi komponentami systemu. Podczas wybierania prędkości transmisji uważać, aby była ona taka sama po stronie nadawania i odbierania danych.

"Parzystość"

Bit parzystości może posłużyć do kontroli parzystości. Służy ona do wykrywania błędów transmisji. Bit parzystości może zabezpieczyć określoną liczbę bitów. Wartość (O lub 1) bitu parzystości musi obliczyć nadajnik, a odbiornik musi ją sprawdzić, korzystając z jednakowego obliczenia. Obliczenie bitu parzystości może nastąpić dla liczby parzystej lub nieparzystej.

"SunSpec Model Type"

W zależności od modelu Sunspec dostępne są dwa różne ustawienia.

float: SunSpec Inverter, model 111, 112, 113 lub 211, 212, 213. **int + SF:** SunSpec Inverter, model 101, 102, 103 lub 201, 202, 203.

```
"Adres licznika"
```

"Adres falownika"

Slave jako Modbus TCP

Jeśli jest uaktywniona funkcja **"Slave jako Modbus TCP**", są dostępne następujące pola edycyjne:

"Port Modbus"

Numer portu TCP, który ma być używany do komunikacji Modbus.

",SunSpec Model Type"

W zależności od modelu Sunspec dostępne są dwa różne ustawienia.

"Adres licznika"

Sterowanie falownikiem przez Modbus

Gdy ta opcja jest aktywna, sterowanie falownikiem odbywa się przez Modbus. Sterowanie falownikiem obejmuje następujące funkcje:

- Wł. / Wył.
- Redukcja mocy
- Zadanie stałego współczynnika mocy, tzw. Power Factor (cos phi)
- Zadanie stałej mocy biernej

Zdalne sterowanie

Zdalne sterowanie i Profil

Operator sieci / dostawca energii może wpływać moc wyjściową falownika poprzez zdalne sterowanie. Warunkiem tego jest aktywne połączenie falownika z Internetem.

Parametry	Zakres war- tości	Opis
Zdalne sterowa- nie	Wyłączony	Zdalne sterowanie falownika jest nieaktyw- ne.
	Włączony	Zdalne sterowanie falownika jest aktywne.
Dopuszczenie zdalnego stero- wania do celów regulacji (Tech- nician)	Nieaktywne / aktywne	Funkcja Dopuszczenie zdalnego sterowa- nia do celów regulacji może być obo- wiązkowa dla prawidłowego działania in- stalacji. *)
Dopuszczenie zdalnego stero- wania dla elek- trowni wirtual- nych (Custo- mer)	Nieaktywne / aktywne	Gdy funkcja Dopuszczenie zdalnego ste- rowania do celów regulacji jest aktywna (wymagany dostęp Technician), funkcja Dopuszczenie zdalnego sterowania dla elektrowni wirtualnych aktywuje się auto- matycznie i nie można jej dezaktywować. *)

*) Cloud Control

Wirtualna elektrownia to połączenie kilku operatorów elektrowni w jeden zespół. Tym zespołem można sterować przez Internet za pomocą sterowania w chmurze. Warunkiem jest połączenie falownika z Internetem. Następuje transmisja danych z instalacji.

Fronius Solar API

Fronius Solar API to otwarty interfejs JSON oparty na sieci Ethernet. Jeżeli jest aktywny, urządzenia IOT w sieci lokalnej mają dostęp do informacji z falownika bez uwierzytelniania. Ze względów bezpieczeństwa interfejs jest fabrycznie wyłączony i nie powinno się go włączać, jeżeli nie jest potrzebny w przypadku rozwiązań innych producentów (np. systemu ładowania akumulatorów w pojazdach elektrycznych, rozwiązań inteligentnego domu itp.).

Zamiast tego do monitorowania instalacji PV firma Fronius poleca platformę Solar.web, która zapewnia bezpieczny dostęp do informacji o stanie falownika i wytwarzaniu energii elektrycznej. Przy aktualizacji oprogramowania sprzętowego do wersji 1.14.x stosowane są ustawienia interfejsu Fronius Solar API. W instalacjach z oprogramowaniem w wersji 1.14.x lub starszej interfejs Solar API jest aktywny. W nowszych wersjach jest nieaktywny, ale można go włączyć i wyłączyć w menu.

Internet Servi-
cesW tym menu wyświetlane są informacje o połączeniach i bieżącym stanie
połączenia. W razie problemów z połączeniem widoczny jest krótki opis błędu.

Konfiguracja krajowa

\land NIEBEZPIECZEŃSTWO!

Niebezpieczeństwo wskutek przeprowadzania diagnostyki i napraw przez osoby nieuprawnione.

Skutkiem mogą być poważne uszczerbki na zdrowiu i straty materialne.

 Diagnostyki i naprawy instalacji PV mogą być wykonywane wyłącznie przez instalatorów i techników serwisu z autoryzowanych serwisów zgodnie z krajowymi normami i przepisami.

WSKAZÓWKA!

Zagrożenie stwarzane przez nieuprawniony dostęp.

Błędnie ustawione parametry mogą negatywnie oddziaływać na sieć publiczną i/lub tryb wprowadzania energii do sieci falownika oraz prowadzić do utraty zgod-ności z normami.

- Parametry mogą dostosowywać wyłącznie instalatorzy/technicy serwisu z autoryzowanych zakładów specjalnych.
- Kodu dostępu nie można przekazywać osobom trzecim i/lub osobom nieupoważnionym.

WSKAZÓWKA!

Zagrożenie stwarzane przez błędnie ustawione parametry.

Błędnie ustawione parametry mogą negatywnie oddziaływać na sieć publiczną i/lub powodować zakłócenia w działaniu i awarie falownika oraz prowadzić do utraty zgodności z normami.

- Parametry mogą dostosowywać wyłącznie instalatorzy/technicy serwisu z autoryzowanych zakładów specjalnych.
- Parametry można dopasować tylko wtedy, gdy pozwala lub wymaga tego operator sieci.
- Parametry dostosowywać tylko przy uwzględnieniu obowiązujących krajowych norm i/lub dyrektyw oraz wytycznych operatora sieci.

Obszar menu "Konfiguracja krajowa" jest przeznaczony wyłącznie dla instalatorów/techników serwisu z autoryzowanych zakładów specjalnych. Po kod dostępu należy zwrócić się do krajowej/międzynarodowej osoby kontaktowej z firmy Fronius korzystając z formularza z wnioskiem.

Wybrane ustawienie krajowe dla danego kraju obejmuje wstępnie ustawione parametry zgodnie z obowiązującymi krajowymi normami i wymaganiami. Zależnie od lokalnych uwarunkowań sieciowych i wytycznych operatora sieci konieczne mogą być dopasowania wybranego ustawienia krajowego.

Ograniczenie wprowadzania energii do sieci Zakład energetyczny lub operator sieci może zadeklarować ograniczenia zasilania sieci dla falownika (np. maks. 70% kWp lub maks. 5 kW). Ograniczenie wprowadzania energii do sieci uwzględnia przy tym zużycie energii na potrzeby własne, zanim nastąpi redukcja mocy falownika:

Istnieją dwie możliwości ograniczenia wprowadzania energii do sieci:

- a) Zwykła redukcja mocy falownika za pomocą Fronius Smart Meter
- b) Redukcja mocy przez zewnętrzny Plant Controller

Przy wyborze rozwiązania przydatne mogą być następujące wzory: P_{WRn} ... Moc falownika n

0% P_{WR1} + 100% P_{WR2} + 100% P_{WR3}... ≤ limit wprowadzania energii do sieci → rozwiązanie a)

0% P_{WR1} + 100% P_{WR2} + 100% $P_{WR3...}$ > limit wprowadzania energii do sieci \rightarrow rozwiązanie b)

Rozwiązanie a) - redukcja mocy pojedynczego falownika

Wymagania mogą zostać spełnione, jeśli redukcja mocy pojedynczego falownika do ≥ 0% umożliwi osiągnięcie wyznaczonego limitu wprowadzania energii do sieci.

Przykład:

W systemie znajdują się 3 falowniki: 1x Fronius Tauro 100 kW, 2x Fronius Tauro 50 kW. Wyznaczony limit wprowadzania energii do sieci w punkcie podłączenia wynosi 100 kW.

Rozwiązanie:

Moc wyjściowa Fronius Tauro może zostać obniżona do 0%, aby limit wprowadzania energii do sieci został spełniony. Moce obu pozostałych falowników nie są redukowane i mogą one w dowolnym momencie wprowadzać do sieci nieograniczoną ilość energii.

Jeśli redukcja mocy falownika do 0% jest niewystarczająca, musi zostać zastosowane rozwiązanie b).

Rozwiązanie b) — integracja z Plant Controller

To rozwiązanie należy zastosować, jeśli redukcja mocy jednego falownika nie pozwala na spełnienie wymagań operatora sieci lub konieczny jest stały dostęp (np. zdalne wyłączenie). W takim przypadku jest wskazana integracja z PLANT CON-TROLLER.

Szczegółowy opis techniczny tego rozwiązania można znaleźć na stronie www.fronius.com, wpisując hasło "Feed in management".

Zamontowanie dodatkowo urządzenia Fronius Smart Meter pozwala na korzystanie także z zalet Fronius Solar.web oprócz funkcji monitorowania systemu PLANT CONTROLLER. Integracja z Fronius Smart Meter umożliwia wizualizację danych dotyczących zużycia i wprowadzania energii do sieci przez instalację PV we Fronius Solar.web i pobieranie ich do analizy.

WE/WY zarządzania mocą

Informacje ogólne

W tej pozycji menu można wprowadzić ustawienia istotne dla operatora sieci dystrybucyjnej (DNO). Można ustawić ograniczenie mocy czynnej w % i/lub ograniczenie współczynnika mocy.

WAŻNE!

Aby wprowadzić ustawienia w tej pozycji menu, konieczne jest podanie hasła serwisowego. Ustawienia w tej sekcji menu mogą wprowadzać tylko przeszkoleni pracownicy wykwalifikowani!

"Wzorzec wejściowy" (obłożenie pojedynczych WE/WY) kliknąć 1 raz = biały (zestyk rozwarty) kliknąć 2 razy = niebieski (zestyk zwarty) kliknąć 3 razy = szary (nieużywany) **"Współczynnik mocy (cos** φ)" **"ind**" = indukcyjny **"cap**" = pojemnościowy

"Komunikat zwrotny operatora sieci"

jeżeli reguła jest aktywna, trzeba skonfigurować wyjście **"Komunikat zwrotny operatora sieci"** (zalecany styk 1) (np. w celu umożliwienia pracy urządzenia sygnalizującego).

Dla opcji "Import" lub "Eksport" stosuje się format *.fpc.

Priorytety sterowania

Do ustawiania priorytetów sterowania odbiornika zdalnego sterowania, ograniczania mocy wprowadzania do sieci i sterowania za pośrednictwem protokołu Modbus.

1 = najwyższy priorytet, 3 = najniższy priorytet

Schemat podłączenia — 4 przekaźniki

Odbiornik sygnału zdalnego sterowania oraz zacisk przyłączeniowy WE/WY falownika można połączyć ze sobą zgodnie ze schematem podłączenia. Jeżeli odległość między falownikiem i odbiornikiem sygnału zdalnego sterowania jest większa niż 10 m, zaleca się zastosowanie kabla co najmniej CAT 5, a ekranowanie trzeba podłączyć z jednej strony do zacisku Push-in sekcji transmisji danych (SHIELD).

- (1) Odbiornik sygnału zdalnego sterowania wyposażony w 4 przekaźniki, do ograniczania mocy czynnej.
- (2) WE/WY sekcji transmisji danych.

Użycie prekonfigurowanego pliku dla trybu z 4 przekaźnikami:

Pobrać plik (.fpc) w pozycji **Tryb 4-przekaźnikowy** na urządzenie końcowe.

- Wczytać plik (.fpc) w sekcji menu "WE/WY zarządzania mocą", klikając przycisk "Import".
- 3 Kliknąć przycisk **"Zapisz"**.

Ustawienia dla trybu 4-przekaźnikowego są zapisane.

Ustawienia zarządzaniem mocy WE/WY — 4 przekaźniki

I/O Power Management

	V+/GND IO I v+ v+ 0 2 4 6 8 10 GND GND 1 3 5 7 9 11	
DNO Feedb	ack	
not used		
DNO R	ules	Ð
Rule 1		^
	0 2 4 6 8 10 1 3 5 7 9 11 Active Power	
	100	_
	Power Factor (cos φ) 1 cap	-
	DNO Feedback	
Rule 2	ā 🗬	^
	0 2 4 6 8 10 1 3 5 7 9 11	
	Active Power 60	
	Power Factor (cos φ) <u>1</u> cap	•
	DNO Feedback	
Rule 3	ā 🔲 -	^
	0 2 4 6 8 10 1 3 5 7 9 11 Active Power	
	30	_
	Power Factor (cos φ) 1 cap	-
	DNO Feedback	
Rule 4	ā 🖛 -	^
	0 2 4 6 8 10 1 3 5 7 9 11	
-	Active Power 0	_
	Power Factor (cos φ) 1 cap	•
	DNO Feedback	
<u> </u> IMF	PORT EXPORT	

0	None
1	None
2	None
3	None
4	None
5	None
6	None
7	None
8	IO control
9	IO control
• 10	IO control
• 11	IO control

Schemat podłączenia — 3 przekaźniki

Odbiornik sygnału zdalnego sterowania oraz zacisk przyłączeniowy WE/WY falownika można połączyć ze sobą zgodnie ze schematem podłączenia. Jeżeli odległość między falownikiem i odbiornikiem sygnału zdalnego sterowania jest większa niż 10 m, zaleca się zastosowanie kabla co najmniej CAT 5, a ekranowanie trzeba podłączyć z jednej strony do zacisku Push-in sekcji transmisji danych (SHIELD).

- (1) Odbiornik sygnału zdalnego sterowania wyposażony w 3 przekaźniki, do ograniczania mocy czynnej.
- (2) WE/WY sekcji transmisji danych.

Użycie prekonfigurowanego pliku dla trybu z 3 przekaźnikami:

1 Pobrać plik (.fpc) w pozycji **Tryb 3-przekaźnikowy** na urządzenie końcowe.

Wczytać plik (.fpc) w sekcji menu "WE/WY zarządzania mocą", klikając przycisk "Import".

3 Kliknąć przycisk **"Zapisz"**.

Ustawienia dla trybu 3-przekaźnikowego są zapisane.

Ustawienia WE/WY zarządzania mocą — 3 przekaźniki

I/O Power Management

Schemat podłączenia — 2 przekaźniki

Odbiornik sygnału zdalnego sterowania oraz zacisk przyłączeniowy WE/WY falownika można połączyć ze sobą zgodnie ze schematem podłączenia. Jeżeli odległość między falownikiem i odbiornikiem sygnału zdalnego sterowania jest większa niż 10 m, zaleca się zastosowanie kabla co najmniej CAT 5, a ekranowanie trzeba podłączyć z jednej strony do zacisku Push-in sekcji transmisji danych (SHIELD).

- (1) Odbiornik sygnału zdalnego sterowania wyposażony w 2 przekaźniki, do ograniczania mocy czynnej.
- (2) WE/WY sekcji transmisji danych.

Użycie prekonfigurowanego pliku dla trybu z 2 przekaźnikami:

Pobrać plik (.fpc) w pozycji **Tryb 2-przekaźnikowy** na urządzenie końcowe.

Wczytać plik (.fpc) w sekcji menu "WE/WY zarządzania mocą", klikając przycisk "Import".

3 Kliknąć przycisk **"Zapisz"**.

Ustawienia dla trybu 2-przekaźnikowego są zapisane.

Ustawienia WE/WY zarządzania mocą — 2 przekaźniki

I/O Power Management

Schemat podłączenia — 1 przekaźnik

Odbiornik sygnału zdalnego sterowania oraz zacisk przyłączeniowy WE/WY falownika można połączyć ze sobą zgodnie ze schematem podłączenia. Jeżeli odległość między falownikiem i odbiornikiem sygnału zdalnego sterowania jest większa niż 10 m, zaleca się zastosowanie kabla co najmniej CAT 5, a ekranowanie trzeba podłączyć z jednej strony do zacisku Push-in sekcji transmisji danych (SHIELD).

- (1) Odbiornik zdalnego sterowania wyposażony w 1 przekaźnik, do ograniczania mocy czynnej.
- (2) WE/WY sekcji transmisji danych.

Użycie prekonfigurowanego pliku dla trybu z 1 przekaźnikiem:

1 Pobrać plik (.fpc) w pozycji **Tryb 1-przekaźnikowy** na urządzenie końcowe.

Wczytać plik (.fpc) w sekcji menu "WE/WY zarządzania mocą", klikając przycisk "Import".

3 Kliknąć przycisk **"Zapisz"**.

Ustawienia dla trybu 1-przekaźnikowego są zapisane.

Ustawienia WE/WY zarządzania mocą — 1 przekaźnik

I/O Power Management

	0	None
	1	None
	2	None
	3	None
	4	None
	5	None
	6	None
	7	None
•	8	IO control
	9	None
	10	None
	11	None

Załącznik

Komunikaty sta-	1006 — Ar	cDetected (dioda świecąca stanu pracy: miga w kolorze żółtym)
	Przyczyna:	W określonym miejscu instalacji PV wykryto łuk elektryczny.
	Usuwanie:	Nie trzeba wykonywać jakichkolwiek czynności. Tryb wprowadzania energii do sieci uruchomi się automatycznie ponownie po 5 minutach.
	1030 — W	SD Open (dioda świecąca stanu pracy: świeci na czerwono)
	Przyczyna:	Przewód sygnałowy został przerwany przez urządzenie podłączone do łańcucha WSD (np. ochronę przeciwprzepięciową) lub usunięto fa- brycznie zamontowaną zworkę i nie zamontowano żadnego urządze- nia wyzwalającego.
	Usuwanie:	W przypadku wyzwolenia ochrony przeciwprzepięciowej SPD falownik musi zostać naprawiony przez autoryzowany serwis.
	ALBO:	Zamontować fabrycznie zamontowaną zworkę lub urządzenie wyzwa- lające.
	ALBO:	Ustawić przełącznik WSD (Wired Shut Down) w położeniu 1 (urządze- nie nadrzędne WSD).
		BEZPIECZEŃSTWO!
	 Monta: wać się i tylko Przest 	zem i podłączeniem ochrony przeciwprzepięciowej SPD mogą zajmo- wyłącznie pracownicy serwisowi przeszkoleni przez firmę Fronius zgodnie z przepisami technicznymi. rzegać przepisów dotyczących bezpieczeństwa.
	1173 — Ar wonym)	cContinuousFault (dioda świecąca stanu pracy: świeci w kolorze czer-
	Przyczyna:	W instalacji PV wykryto łuk elektryczny i osiągnięto maks. liczbę au- tomatycznych włączeń w ciągu 24 godzin.
	Usuwanie:	Przytrzymać czujnik w falowniku wciśnięty przez 3 sekundy®(maks. 6 sekund).
	ALBO:	W interfejsie WWW falownika, w sekcji menu "System" → "Event Log" lub potwierdzić status "1173 — ArcContinuousFault" .
	ALBO:	W interfejsie WWW falownika, w menu użytkownika "Powiadomienia" potwierdzić status "1173 — ArcContinuousFault" .
		rożnie!
	 Niebezpiec Skutkiem r Przed r całą ins Zlecić wanych 	zzeństwo stwarzane przez uszkodzone komponenty instalacji PV nogą być poważne uszczerbki na zdrowiu i straty materialne. potwierdzeniem statusu "1173 — ArcContinuousFault" sprawdzić stalację PV pod kątem ewentualnych uszkodzeń. naprawę uszkodzonych komponentów przez pracowników wykwalifiko- n.

Dane techniczne

Tauro 50-3-D / 50-3-P

Dane wejściowe	
Maksymalne napięcie wejściowe (przy 1000 W/m² / -10°C w trybie jałowym)	1000 V _{DC}
Napięcie rozpoczęcia pracy	200 V _{DC}
Zakres napięcia MPP	400–870 V _{DC}
Liczba MPPT	3
Maksymalny prąd wejściowy (I _{DC max}) łącznie PV1 / PV2 / PV3 na łańcuch (tylko w przypadku wariantu D)	134 A 36 A / 36 A / 72 A 14,5 A / 22 A (bezpieczni- ki 30 A)
Maks. prąd zwarciowy ⁸⁾ łącznie PV1 / PV2 / PV3 na łańcuch (tylko w przypadku wariantu D)	240 A 72 A / 72 A / 125 A 20 A / 30 A (bezpieczniki 30 A)
Maksymalna moc pola PV (P _{PV max}) łącznie PV1 / PV2 / PV3	75 kWp 25 kWp / 25 kWp / 50 kWp
Kategoria przepięciowa DC	2
Maks. prąd wsteczny falownika ³⁾ Wariant D: PV1 / PV2 / PV3 Wariant P: PV1 / PV2 / PV3	72 / 72 / 125 A ⁴⁾ 0 / 0 / 0 A ⁴⁾
Maks. pojemność generatora fotowoltaicznego względem ziemi	10 000 nF
Wartość graniczna kontroli rezystancji izolacji między generatorem fotowoltaicznym a uziemie- niem (w stanie fabrycznym) ⁷⁾	34 kΩ
Zakres ustawień kontroli rezystancji izolacji między generatorem fotowoltaicznym a uziemie- niem ⁶⁾	10–10 000 kΩ
Wartość graniczna i czas wykrywania chwilowego zwarcia (w stanie fabrycznym)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
Wartość graniczna i czas wykrywania trwałego zwarcia (w stanie fabrycznym)	450 / 300 mA / ms
Zakres ustawień wykrywania trwałego zwarcia ⁶⁾	30–1000 mA
Cykliczne powtarzanie kontroli rezystancji izolacji (w stanie fabrycznym)	24 h
Zakres ustawień powtarzania cyklicznej kontroli rezystancji izolacji	-

Dane wyjściowe

Zakres napięcia sieciowego	180–270 V _{AC}
Znamionowe napięcie sieciowe	220 V _{AC} 230 V _{AC} ¹⁾

Dane wyjściowe	
Moc znamionowa	50 kW
Znamionowa moc pozorna	50 kVA
Częstotliwość znamionowa	50 / 60 Hz ¹⁾
Maksymalny prąd wyjściowy na fazę	76 A
Początkowy zwarciowy prąd przemienny na fazę I_{K}	76 A
Współczynnik mocy cos phi	0–1 ind./poj. ²⁾
Podłączenie do sieci	3~ NPE 380 / 220 V _{AC} 3~ NPE 400 / 230 V _{AC}
Maksymalna moc wyjściowa	50 kW
Znamionowa moc wyjściowa	50 kW
Znamionowy prąd wyjściowy na fazę	75,8 A / 72,5 A
Współczynnik zniekształceń harmonicznych	< 3%
Kategoria przepięciowa AC	3
Prąd włączenia ⁵⁾	228 A peak / 26,6 A rms w czasie 3,2 ms ⁴⁾
Maks. prąd zwarciowy na wyjściu w jednostce cza- su	44,7 A / 16,24 ms

Dane ogólne	
Straty mocy w trybie nocnym = zużycie w trybie czuwania	15 W
Sprawność europejska (400 / 600 / 800 / 870 V _{DC})	97,8 / 98,3 / 97,9 / 97,7%
Maksymalny współczynnik sprawności	98,5%
Klasa ochronności	1
Klasa EMC urządzenia	В
Stopień zanieczyszczenia	3
Dopuszczalna temperatura otoczenia z wbudowaną opcją "odłącznik prądu przemienne- go"	od -40°C do +65°C od -30°C do +65°C
Dopuszczalna temperatura przechowywania	od -40°C do +70°C
Wilgotność względna	0-100%
Poziom ciśnienia akustycznego (600 V _{DC})	68,4 dB(A) (ref. 20 μPA)
Stopień ochrony	IP 65
Wymiary (wysokość × szerokość × głębokość)	755 × 1109 × 346 mm
Masa	98 kg
Topologia falownika	nieizolowany, beztransfor- matorowy

Zabezpieczenia	
Rozłącznik DC	zintegrowany

Zabezpieczenia	
Zasada chłodzenia	regulowana wentylacja
	wymuszona
RCMU ⁹⁾	zintegrowany
Izolacja DC ⁹⁾	zintegrowany ²⁾
Zachowanie w momencie przeciążenia	Przesunięcie punktu pracy Ogranicznik mocy
Aktywne zabezpieczenie antywyspowe	Metoda przesunięcia częstotliwości

Tauro Eco 50-3-	Dane wejściowe	
D / 50-3-P	Maksymalne napięcie wejściowe (przy 1000 W/m² / -10°C w trybie jałowym)	1000 V _{DC}
	Napięcie rozpoczęcia pracy	650 V _{DC}
	Zakres napięcia MPP	580–930 V _{DC}
	Liczba MPPT	1
	Maksymalny prąd wejściowy (I _{DC max}) łącznie PV1 / PV2 na łańcuch (tylko w przypadku wariantu D)	87,5 A 75 A / 75 A 14,5 A / 22 A (bezpieczni- ki 30 A)
	Maks. prąd zwarciowy 8) łącznie PV1 / PV2 na łańcuch (tylko w przypadku wariantu D)	178 A 125 A / 125 A 20 A / 30 A (bezpieczniki 30 A)
	Maksymalna moc pola PV (P _{PV max}) łącznie PV1 / PV2	75 kWp 60 kWp / 60 kWp
	Kategoria przepięciowa DC	2
	Maks. prąd wsteczny falownika ³⁾	125 A ⁴⁾
	Maks. pojemność generatora fotowoltaicznego względem ziemi	10 000 nF
	Wartość graniczna kontroli rezystancji izolacji między generatorem fotowoltaicznym a uziemie- niem (w stanie fabrycznym) ⁷⁾	34 kΩ
	Zakres ustawień kontroli rezystancji izolacji między generatorem fotowoltaicznym a uziemie- niem ⁶⁾	10–10 000 kΩ
	Wartość graniczna i czas wykrywania chwilowego zwarcia (w stanie fabrycznym)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
	Wartość graniczna i czas wykrywania trwałego zwarcia (w stanie fabrycznym)	450 / 300 mA / ms
	Zakres ustawień wykrywania trwałego zwarcia ⁶⁾	30–1000 mA
	Cykliczne powtarzanie kontroli rezystancji izolacji (w stanie fabrycznym)	24 h

Dane wejściowe	
Zakres ustawień powtarzania cyklicznej kontroli rezystancji izolacji	-

Dane wyjściowe	
Zakres napięcia sieciowego	180–270 V _{AC}
Znamionowe napięcie sieciowe	220 V _{AC} 230 V _{AC} ¹⁾
Moc znamionowa	50 kW
Znamionowa moc pozorna	50 kVA
Częstotliwość znamionowa	50 / 60 Hz ¹⁾
Maksymalny prąd wyjściowy na fazę	76 A
Początkowy zwarciowy prąd przemienny na fazę I_{K}	76 A
Współczynnik mocy cos phi	0–1 ind./poj. ²⁾
Podłączenie do sieci	3~ NPE 380 / 220 V _{AC} 3~ NPE 400 / 230 V _{AC}
Maksymalna moc wyjściowa	50 kW
Znamionowa moc wyjściowa	50 kW
Znamionowy prąd wyjściowy na fazę	75,8 A / 72,5 A
Współczynnik zniekształceń harmonicznych	< 3%
Kategoria przepięciowa AC	3
Prąd włączenia ⁵⁾	209 A peak / 30,5 A rms w czasie 2,1 ms ⁴⁾
Maks. prąd zwarciowy na wyjściu w jednostce cza- su	37,2 A / 19,4 ms

Dane ogólne	
Straty mocy w trybie nocnym = zużycie w trybie czuwania	15 W
Sprawność europejska (580/800/930 V _{DC})	98,2 / 97,7 / 97,3%
Maksymalny współczynnik sprawności	98,5%
Klasa ochronności	1
Klasa EMC urządzenia	В
Stopień zanieczyszczenia	3
Dopuszczalna temperatura otoczenia z wbudowaną opcją "odłącznik prądu przemienne- go"	od - 40°C do +65°C od -30°C do +65°C
Dopuszczalna temperatura przechowywania	od -40°C do +70°C
Wilgotność względna	0-100%
Poziom ciśnienia akustycznego (580 V _{DC})	68,5 dB(A) (ref. 20 μPA)
Stopień ochrony	IP 65
Wymiary (wysokość × szerokość × głębokość)	755 × 1109 × 346 mm

Dane ogólne	
Masa	80 kg
Topologia falownika	nieizolowany, beztransfor- matorowy

Zabezpieczenia	
Rozłącznik DC	zintegrowany
Zasada chłodzenia	regulowana wentylacja wymuszona
RCMU ⁹⁾	zintegrowany
Izolacja DC ⁹⁾	zintegrowany ²⁾
Zachowanie w momencie przeciążenia	Przesunięcie punktu pracy Ogranicznik mocy
Aktywne zabezpieczenie antywyspowe	Metoda przesunięcia częstotliwości
AFCI (tylko w przypadku wariantu D z bezpieczni- kiem 15/20 A)	Opcje
Klasyfikacja AFPE (AFCI) (wg IEC63027) ⁹⁾ (tylko w przypadku wariantu D z bezpiecznikiem 15/20 A)	= F-I-AFPE-1-7/7-2 Kompletna osłona Zintegrowana AFPE Po 1 monitorowanym łańcuchu na każdy port wejściowy Po 7/7 portów wejścio- wych na kanał (AFD1: 7, AFD2: 7) 2 monitorowane kanały

Tauro Eco 99-3-	Dane wejściowe	
D799-3-P	Maksymalne napięcie wejściowe (przy 1000 W/m² / -10°C w trybie jałowym)	1000 V _{DC}
	Napięcie rozpoczęcia pracy	650 V _{DC}
	Zakres napięcia MPP	580–930 V _{DC}
	Liczba MPPT	1
	Maksymalny prąd wejściowy (I _{DC max}) łącznie Wariant P: PV1 / PV2 Wariant D: PV1 / PV2 / PV3 na łańcuch (tylko w przypadku wariantu D)	175 A 100 A / 100 A 75 A / 75 A / 75 A 14,5 A / 22 A (bezpieczni- ki 30 A)
	Maks. prąd zwarciowy 8) Wariant P łącznie Wariant D łącznie PV1 / PV2 / (PV3 tylko w przypadku wariantu D) na łańcuch (tylko w przypadku wariantu D)	250 A 355 A 125 A / 125 A / 125 A 20 A / 30 A (bezpieczniki 30 A)

Dane wejściowe	
Maksymalna moc pola PV (P _{PV max}) łącznie Wariant P: PV1 / PV2 Wariant D: PV1 / PV2 / PV3	150 kWp 79 kWp / 79 kWp 57 kWp / 57 kWp / 57 kWp
Kategoria przepięciowa DC	2
Maks. prąd wsteczny falownika ³⁾ Wariant P łącznie Wariant D łącznie	125 A ⁴⁾ 250 A ⁴⁾
Maks. pojemność generatora fotowoltaicznego względem ziemi	19 998 nF
Wartość graniczna kontroli rezystancji izolacji między generatorem fotowoltaicznym a uziemie- niem (w stanie fabrycznym) ⁷⁾	34 kΩ
Zakres ustawień kontroli rezystancji izolacji między generatorem fotowoltaicznym a uziemie- niem ⁶⁾	10–10 000 kΩ
Wartość graniczna i czas wykrywania chwilowego zwarcia (w stanie fabrycznym)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
Wartość graniczna i czas wykrywania trwałego zwarcia (w stanie fabrycznym)	900 / 300 mA / ms
Zakres ustawień wykrywania trwałego zwarcia ⁶⁾	30–1000 mA
Cykliczne powtarzanie kontroli rezystancji izolacji (w stanie fabrycznym)	24 h
Zakres ustawień powtarzania cyklicznej kontroli rezystancji izolacji	-

Dane wyjściowe

55	
Zakres napięcia sieciowego	180–270 V _{AC}
Znamionowe napięcie sieciowe	220 V _{AC} 230 V _{AC} ¹⁾
Moc znamionowa	99,99 kW
Znamionowa moc pozorna	99,99 kVA
Częstotliwość znamionowa	50 / 60 Hz ¹⁾
Maksymalny prąd wyjściowy na fazę	152 A
Początkowy zwarciowy prąd przemienny na fazę I_{K}	152 A
Współczynnik mocy cos phi	0–1 ind./poj. ²⁾
Podłączenie do sieci	3~ NPE 380 / 220 V _{AC} 3~ NPE 400 / 230 V _{AC}
Maksymalna moc wyjściowa	99,99 kW
Znamionowa moc wyjściowa	99,99 kW
Znamionowy prąd wyjściowy na fazę	151,5 A / 144,9 A
Współczynnik zniekształceń harmonicznych	< 3%
Kategoria przepięciowa AC	3

Dane wyjściowe	
Prąd włączenia ⁵⁾	244 A peak / 27,2 A rms w czasie 3,2 ms 4)
Maks. prąd zwarciowy na wyjściu w jednostce cza- su	93,9 A / 22 ms

Dane ogólne	
Straty mocy w trybie nocnym = zużycie w trybie czuwania	15 W
Sprawność europejska (580/800/930 V _{DC})	98,2 / 97,7 / 97,3%
Maksymalny współczynnik sprawności	98,5%
Klasa ochronności	1
Klasa EMC urządzenia	В
Stopień zanieczyszczenia	3
Dopuszczalna temperatura otoczenia z wbudowaną opcją "odłącznik prądu przemienne- go"	od -40°C do +65°C od -30°C do +65°C
Dopuszczalna temperatura przechowywania	od -40°C do +70°C
Wilgotność względna	0-100%
Poziom ciśnienia akustycznego (580 V _{DC} / 930 V _{DC})	74,4/79,3 dB(A) (ref. 20 μPA)
Stopień ochrony	IP 65
Wymiary (wysokość × szerokość × głębokość)	755 × 1109 × 346 mm
Masa	109 kg
Topologia falownika	nieizolowany, beztransfor- matorowy

Zabezpieczenia	
Rozłącznik DC	zintegrowany
Zasada chłodzenia	regulowana wentylacja wymuszona
RCMU ⁹⁾	zintegrowany
Izolacja DC ⁹⁾	zintegrowany ²⁾
Zachowanie w momencie przeciążenia	Przesunięcie punktu pracy Ogranicznik mocy
Aktywne zabezpieczenie antywyspowe	Metoda przesunięcia częstotliwości
AFCI (tylko w przypadku wariantu D z bezpieczni- kiem 15/20 A)	Opcje

Zabezpieczenia	
Klasyfikacja AFPE (AFCI) (wg IEC63027) ⁹⁾ (tylko w przypadku wariantu D z bezpiecznikiem 15/20 A)	= F-I-AFPE-1-7/7/8-3 Kompletna osłona Zintegrowana AFPE Po 1 monitorowanym łańcuchu na każdy port wejściowy Po 7/7/8 portów wejścio- wych na kanał (AFD1: 7, AFD2: 7, AFD3: 8) 3 monitorowane kanały

Tauro Eco 100-3-D / 100-3-P

Dane wejściowe	
Maksymalne napięcie wejściowe (przy 1000 W/m² / -10°C w trybie jałowym)	1000 V _{DC}
Napięcie rozpoczęcia pracy	650 V _{DC}
Zakres napięcia MPP	580–930 V _{DC}
Liczba MPPT	1
Maksymalny prąd wejściowy (I _{DC max}) łącznie Wariant P: PV1 / PV2 Wariant D: PV1 / PV2 / PV3 na łańcuch (tylko w przypadku wariantu D)	175 A 100 A / 100 A 75 A / 75 A / 75 A 14,5 A / 22 A (bezpieczni- ki 30 A)
Maks. prąd zwarciowy 8) Wariant P łącznie Wariant D łącznie PV1 / PV2 / (PV3 tylko w przypadku wariantu D) na łańcuch (tylko w przypadku wariantu D)	250 A 355 A 125 A / 125 A / 125 A 20 A / 30 A (bezpieczniki 30 A)
Maksymalna moc pola PV (P _{PV max}) łącznie Wariant P: PV1 / PV2 Wariant D: PV1 / PV2 / PV3	150 kWp 79 kWp / 79 kWp 57 kWp / 57 kWp / 57 kWp
Kategoria przepięciowa DC	2
Maks. prąd wsteczny falownika ³⁾ Wariant P łącznie Wariant D łącznie	125 A ⁴⁾ 250 A ⁴⁾
Maks. pojemność generatora fotowoltaicznego względem ziemi	20 000 nF
Wartość graniczna kontroli rezystancji izolacji między generatorem fotowoltaicznym a uziemie- niem (w stanie fabrycznym) ⁷⁾	34 kΩ
Zakres ustawień kontroli rezystancji izolacji między generatorem fotowoltaicznym a uziemie- niem ⁶⁾	10–10 000 kΩ

Dane wejściowe	
Wartość graniczna i czas wykrywania chwilowego zwarcia (w stanie fabrycznym)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
Wartość graniczna i czas wykrywania trwałego zwarcia (w stanie fabrycznym)	900 / 300 mA / ms
Zakres ustawień wykrywania trwałego zwarcia ⁶⁾	30–1000 mA
Cykliczne powtarzanie kontroli rezystancji izolacji (w stanie fabrycznym)	24 h
Zakres ustawień powtarzania cyklicznej kontroli rezystancji izolacji	-

Dane wyjściowe

Zakres napięcia sieciowego	180–270 V _{AC}
Znamionowe napięcie sieciowe	220 V _{AC} 230 V _{AC} ¹⁾
Moc znamionowa	100 kW
Znamionowa moc pozorna	100 kVA
Częstotliwość znamionowa	50 / 60 Hz ¹⁾
Maksymalny prąd wyjściowy na fazę	152 A
Początkowy zwarciowy prąd przemienny na fazę I_{K}	152 A
Współczynnik mocy cos phi	0–1 ind./poj. ²⁾
Podłączenie do sieci	3~ NPE 380 / 220 V _{AC} 3~ NPE 400 / 230 V _{AC}
Maksymalna moc wyjściowa	100 kW
Znamionowa moc wyjściowa	100 kW
Znamionowy prąd wyjściowy na fazę	151,5 A / 144,9 A
Współczynnik zniekształceń harmonicznych	< 3%
Kategoria przepięciowa AC	3
Prąd włączenia ⁵⁾	244 A peak / 27,2 A rms w czasie 3,2 ms 4)
Maks. prąd zwarciowy na wyjściu w jednostce cza- su	93,9 A / 22 ms

Dane ogólne

Straty mocy w trybie nocnym = zużycie w trybie czuwania	15 W
Sprawność europejska (580/800/930 V _{DC})	98,2 / 97,7 / 97,3%
Maksymalny współczynnik sprawności	98,5%
Klasa ochronności	1
Klasa EMC urządzenia	В
Stopień zanieczyszczenia	3
Dane ogólne	
--	----------------------------
Dopuszczalna temperatura otoczenia	od -40°C do +65°C
z wbudowaną opcją "odłącznik prądu przemienne- go"	od -30°C do +65°C
Dopuszczalna temperatura przechowywania	od -40°C do +70°C
Wilgotność względna	0-100%
Poziom ciśnienia akustycznego (580 V _{DC} / 930	74,4/79,3 dB(A) (ref. 20
V _{DC})	μΡΑ)
Stopień ochrony	IP 65
Wymiary (wysokość × szerokość × głębokość)	755 × 1109 × 346 mm
Masa	109 kg
Topologia falownika	nieizolowany, beztransfor-
	matorowy

Zabezpieczenia	
Rozłącznik DC	zintegrowany
Zasada chłodzenia	regulowana wentylacja wymuszona
RCMU ⁹⁾	zintegrowany
Izolacja DC ⁹⁾	zintegrowany ²⁾
Zachowanie w momencie przeciążenia	Przesunięcie punktu pracy Ogranicznik mocy
Aktywne zabezpieczenie antywyspowe	Metoda przesunięcia częstotliwości
AFCI (tylko w przypadku wariantu D z bezpieczni- kiem 15/20 A)	Opcje
Klasyfikacja AFPE (AFCI) (wg IEC63027) ⁹⁾ (tylko w przypadku wariantu D z bezpiecznikiem 15/20 A)	= F-I-AFPE-1-7/7/8-3 Kompletna osłona Zintegrowana AFPE Po 1 monitorowanym łańcuchu na każdy port wejściowy Po 7/7/8 portów wejścio- wych na kanał (AFD1: 7, AFD2: 7, AFD3: 8) 3 monitorowane kanały

WLAN

WLAN	
Zakres częstotliwości	2412–2462 MHz
Używane kanały / moc	Kanał: 1–11 b,g,n HT20 Kanał: 3–9 HT40 <18 dBm

WLAN	
Modulacja	802.11b: DSSS (1 Mb/s DBPSK, 2 Mb/s DQPSK, 5,5/11 Mb/s CCK) 802.11g: OFDM (6/9 Mb/s BPSK, 12/18 Mb/s QPSK, 24/36 Mb/s 16- QAM, 48/54 Mb/s 64-QAM) 802.11n: OFDM (6,5 BPSK, QPSK,
	10-QAM, 04-QAM)

Objaśnienia do przypisów

- 1) Podane wartości są wartościami standardowymi; w zależności od wymogów falownik jest kalibrowany odpowiednio dla danego kraju.
- W zależności od konfiguracji krajowej lub ustawień właściwych dla danego urządzenia

(ind. = indukcyjny; poj. = pojemnościowy)

- 3) Maksymalny prąd od uszkodzonego modułu fotowoltaicznego do wszystkich pozostałych modułów fotowoltaicznych. Od samego falownika do strony PV falownika wynosi on O A.
- 4) Zagwarantowany przez konstrukcję elektryczną falownika
- 5) Prąd szczytowy przy włączaniu falownika
- 6) Podane wartości są wartościami standardowymi, które należy skorygować zależnie od wymagań i mocy instalacji PV.
- 7) Podana wartość jest wartością maksymalną, której przekroczenie może wpływać negatywnie na działanie.
- 8) $I_{SC PV} = I_{SC max} \ge I_{SC} (STC) \times 1,25 \text{ zgodnie z np.: IEC } 60364-7-712, NEC$ 2020, AS/NZS 5033:2021
- 9) Klasa oprogramowania B (jednokanałowe z cyklicznym autotestem) wg IE-C60730-1 załącznik H.

Ustawienia	
Nazwa produktu	EATON PV-DIS-10-125/2-REFOHA
Znamionowe na- pięcie izolacji	1000 V _{DC}
Znamionowa odpor- ność udarowa	6 kV
Przystosowanie do izolacji	Tak, tylko prąd stały
Znamionowy prąd roboczy	Znamionowy prąd roboczy Ie ≤ 100 A: Kategoria użytko- wania DC-PV2 (wg IEC/EN 60947-3)
	Znamionowy prąd roboczy Ie ≤ 125 A: Kategoria użytko- wania DC-PV1 (wg IEC/EN 60947-3)
Kategoria użytkowa- nia i/lub kategoria użytkowania PV	wg IEC/EN 60947-3 kategoria użytkowania DC-PV2 lub DC-PV1
Znamionowy prąd zwarciowy wytrzy- mywany (Icw)	Znamionowy prąd zwarciowy wytrzymywany (Icw): 12 x le
	UstawieniaNazwa produktuZnamionowe na- pięcie izolacjiZnamionowa odpor- ność udarowaPrzystosowanie do izolacjiZnamionowy prąd roboczyKategoria użytkowa- nia i/lub kategoria użytkowania PVZnamionowy prąd zwarciowy wytrzy- mywany (Icw)

Ustawienia

Znamionowy prąd Znamionowy prąd zwarciowy załączalny (Icm): 1000 A zwarciowy załączalny (Icm)

J					
	Znamio- nowe na- pięcie ro- bocze (Ue) [V d.c.]	Znamio- nowy prąd ro- boczy (Ie) [A]	I(make) / I(break) (1,5x Ie) [A] DC-PV1	Znamio- nowy prąd ro- boczy (Ie) [A]	I(make) / I(break) (4x Ie) [A] DC-PV2
Prąd znamionowy		DC-PV1		DC-PV2	
wytączatny	≤ 500	125	187,5	125	500
	600	125	187,5	125	500
	800	125	187,5	125	500
	900	125	187,5	110	440
	1000	125	187,5	100	400

Uwzględnione normy i wytyczne

Znak CE	Urządzenie spełnia wszystkie wymagane i obowiązujące normy oraz dyrektywy w ramach obowiązujących dyrektyw europejskich, dzięki czemu urządzenia są ozna- kowane znakiem CE.
WLAN	Zgodność z Dyrektywą w sprawie urządzeń radiowych 2014/53/UE (Radio Equip- ment Directive RED) Wyżej podana tabela danych zawiera zgodnie z art.10.8 (a) i 10.8 (b) RED infor- macje dotyczące zastosowanych pasm częstotliwości i maksymalnej mocy trans- misji HF bezprzewodowych produktów Fronius oferowanych do sprzedaży na te- renie UE. Produkty Fronius muszą być zainstalowane i użytkowane w taki sposób, aby dany produkt był oddalony od ciała o co najmniej 20 cm.
Awaria sieci	Standardowo zintegrowane w falowniku procedury pomiarów i procedury bezpie- czeństwa dbają o to, aby w razie awarii sieci została natychmiast przerwana wy- syłka energii (np. przy odłączeniu przez dostawcę energii lub uszkodzeniu linii przesyłowych).

Serwis, warunki gwarancji i utylizacja

Fronius SOS	Na stronie sos.fronius.com można w dowolnym momencie zapoznać się z infor- macjami o gwarancji i urządzeniu, rozpocząć diagnostykę we własnym zakresie oraz zamówić komponenty na wymianę. Bliższych informacje o częściach zamiennych może udzielić instalator lub osoba kontaktowa odpowiedzialna za instalację PV.
Fabryczna gwa- rancja Fronius	Szczegółowe warunki gwarancji obowiązujące w danym kraju są dostępne w Inter- necie: www.fronius.com/solar/warranty W celu uzyskania pełnego czasu gwarancji na nowy zainstalowany falownik lub za- sobnik firmy Fronius, prosimy o rejestrację na stronie: www.solarweb.com.
Utylizacja	Producent Fronius International GmbH odbierze stare urządzenie i zadba o jego prawidłową utylizację. Muszą być przestrzegane krajowe przepisy dotyczące utyli- zacji starych urządzeń elektronicznych.

Fronius International GmbH

Froniusstraße 1 4643 Pettenbach Austria contact@fronius.com www.fronius.com

At <u>www.fronius.com/contact</u> you will find the contact details of all Fronius subsidiaries and Sales & Service Partners.