

Aplikacja

SolarGo

Aplikacja

SEMS Portal

Strona

internetowa

SEMS Portal

Oficialna strona

internetowa

GOODWE (Chiny)

GOODWE (Niemcy)

GOODWE (Holandia)

GOODWE (Indie)

GOODWE (Turcja)

GOODWE (Meksyk)

GOODWE (Brazylia)

T: +55 81 991239286

GOODWE (UK)

GOODWE (Wiochy)

T: +39 338 879 38 81; +39 831 162 35 52

GOODWE (Australia)

Victoria, 3004, Australia

GOODWE (Korea)

T: 82 (2) 3497 1066

INSTRUKCJA OBSŁUGI SERII HT

FALOWNIK SOLARNY Falownik fotowoltaiczny współpracujący z siecią

Wer. 1.0 2021/08/02

Uwaga: Powyższe dane kontaktowe mogą ulec zmianie bez wcześniejszego powiadomienia. Szczegółowe informacje znajdują się na oficjalnej stronie firmy www.goodwe.com

1 Definicje symboli	
---------------------	--

03
03
03
04
05

4 Sposób ir	nstalacji	
4.1 Instrukcje i	instalacji	
4.2 Wybór miej	jsca instalacji	
4.3 Instalacja fa	alownika	

4.4 Instalacja elektryczna	. 10
4.5 Instalacja funkcji komunikacji	. 17

5 Instrukcje obsługi 21

5.1 Opis wskaźników	. 21
5.2 Opis ekranu wyświetlacza i przycisków	. 22
5.3 Informacje o błędach	. 26

6 Najczęściej zadawane pytania ______27

7 Konserwacja	29
7.1 Czyszczenie wentylatora	29
7.2 Kontrola przełącznika DC	29
7.3 Sprawdzenie podłączeń elektrycznych	30

8 Parametry techniczne 31

8.1 Specyfikacje produktu	
8.2 Schemat obwodu głównego	

1 Definicja symbolu

\triangle	Ostrzeżenia dotyczące bezpieczeństwa – ignorowanie symboli ostrzegawczych podanych w tej instrukcji może prowadzić do niewielkich lub umiarkowanych obrażeń.
	Materiały przeznaczone do recyklingu
Â	Niebezpieczeństwo z powodu wysokiego napięcia, unikać ryzyka porażenia prądem
$\underbrace{\uparrow \uparrow}$	Tą stroną do góry, nie przechylać
	Gorąca powierzchnia, nie dotykać
4	Limit układania, można układać do 4 warstw
	Produkt nie może być wyrzucany jako zwykły odpad, lecz musi być poddany recyklingowi przy użyciu specjalnych metod
Ţ	Elementy kruche, należy obchodzić się z nimi ostrożnie
	Unikać zawilgocenia
Ţ.	Zob. instrukcje obsługi
	Po wyłączeniu zasilania należy odczekać 5 minut, aby upewnić się, że urządzenie jest w pełni rozładowane
()	Znak CE

2 Instrukcje bezpieczeństwa 🖄

Współpracujące z siecią falowniki fotowoltaiczne serii HT firmy Jiangsu GOODWEE Power Technology Co., Ltd. (dalej nazywanej GOODWE) zostały zaprojektowane i przetestowane w ścisłej zgodności z obowiązującymi przepisami bezpieczeństwa. Ponieważ jednak jest to sprzęt elektryczny i elektroniczny, podczas montażu i konserwacji należy przestrzegać następujących instrukcji bezpieczeństwa, a nieprawidłowa obsługa może spowodować poważne obrażenia ciała i szkody materialne u operatora i osób trzecich.

- Falownik musi być instalowany i konserwowany przez wykwalifikowanych pracowników, zgodnie z obowiązującymi normami i przepisami.
- Przed przystąpieniem do instalacji i konserwacji falownika należy odłączyć wejście DC i sieć AC od falownika, a po odłączeniu nie wolno dotykać falownika przez co najmniej 5 minut po odłączeniu, aby zapobiec porażeniu prądem.
- Podczas pracy falownika lokalna temperatura niektórych elementów może przekroczyć 60°C. Nie dotykać urządzenia, aby uniknąć oparzeń.
- Wszystkie instalacje elektryczne muszą być zgodne z obowiązującymi normami elektrycznymi. Falownik może być podłączany do sieci tylko przez wykwalifikowanych pracowników i wyłącznie po uzyskaniu zezwolenia od lokalnego zakładu energetycznego.
- · Falownik należy montować w miejscu niedostępnym dla dzieci.
- · Należy podejmować odpowiednie środki przeciwdziałania wyładowaniom elektrostatycznym.
- Bez zezwolenia nie wolno zdejmować górnej pokrywy, dotykać ani wymieniać innych komponentów poza zaciskami żył, w przeciwnym razie GOODWE nie ponosi odpowiedzialności za żadne obrażenia ciała ani uszkodzenia falownika.
- Upewnić się, że napięcie wejściowe DC jest niższe od maksymalnego napięcia wejściowego falownika, w przeciwnym razie falownik zostanie uszkodzony. Firma GOODWE nie ponosi odpowiedzialności za te szkody, a gwarancja ulegnie unieważnieniu.
- Stringi PV pod wpływem promieni słonecznych wytwarzają prąd stały o wysokim napięciu. Krok ten musi być zgodny z naszymi instrukcjami, w przeciwnym razie mogą nie zadziałać niektóre zabezpieczenia, narażając pracowników lub użytkownika na niebezpieczeństwo.
- · Podczas pracy falownika nie należy wkładać ani wyjmować złączy DC ani AC.
- Poziom ochrony IP66 zakłada całkowite uszczelnienie urządzenia. Zaleca się instalację falownika najpóźniej jeden dzień po jego rozpakowaniu. W przeciwnym razie należy zamknąć niepodłączony port, aby zabezpieczyć urządzenie przed wnikaniem wody i pyłu.
- Jeśli falownik fotowoltaiczny nie ma być używany natychmiast, należy upewnić się, że środowisko przechowywania spełnia następujące wymagania:
- 1. Nie należy usuwać opakowania zewnętrznego;
- 2. Zalecana temperatura przechowywania: -40°C do 70°C zalecana wilgotność przechowywania: 0% do 100% (bez kondensacji);
- 3. Przechowywać w czystym i suchym miejscu, chronić przed kurzem i parą wodną;
- 4. Dopuszczalne składowanie maks. w 4 warstwach;
- 5. Wymagane regularne kontrole. W przypadku stwierdzenia ugryzień gryzoni należy natychmiast wymienić materiały opakowaniowe.
- 6. Po długotrwałym przechowywaniu, przed oddaniem do użytku, falownik musi zostać sprawdzony i przetestowany przez wykwalifikowanych pracowników.
- 7. Podczas długotrwałego przechowywania falownik musi być przykryty tkaniną przeciwdeszczową, aby zapobiec korozji opakowania.

3 Informacje ogólne o produkcie

3.1 Konwencje nazewnicze produktu

Instrukcja dotyczy następujących modeli:

GW73KLV-HT, GW75K-HT, GW80K-HT, GW100K-HT, GW110K-HT, GW120K-HT, GW136K-HTH

- Opis modelu (na przykładzie GW100K-HT):
- 1. GW skrót nazwy firmy
- 2. 100K znamionowa moc wyjściowa
- 3. HT kod modelu

3.2 Przeznaczenie produktu

Seria HT to trójfazowy, beztransformatorowy falownik do łączenia stringów PV z siecią energetyczną. Jest on kluczową jednostką systemu fotowoltaicznego. Falownik przetwarza prąd stały generowany przez moduł fotowoltaiczny w prąd zmienny o parametrach zgodnych z lokalną siecią energetyczną i przekazuje go do sieci energetycznej. Przeznaczenie falownika przedstawiono na poniższym schemacie:

Jeśli po stronie wyjściowej falownika nie zastosowano transformatora izolacyjnego w celu podłączenia do sieci energetycznej, złącze wejściowe PV+, ani złącze wejściowe PV-falownika nie mogą być podłączone do uziemienia.

Pozycja	Тур	Uwagi		
A	String PVModuły PV zawierające krzem monokrystaliczny, polikrystaliczny, układy cienkowarstwowe bez uzi			
В	Falownik	Seria HT		
С	Sprzęt rozdzielczy	Skrzynka rozdzielcza AC		
D	Sieć energetyczna	Poszczególne modele TN-S, TN-C, TN-C-S, TT, IT znajdują zastosowanie w poniższych strukturach sieci energetycz- nych		

Obsługiwana struktura sieci:

Struktury sieci obsługiwane przez urządzenia HT z serii 73K/75K/80K/100K/110K/120K to TN-S, TN-C, TN-C-S, TT, IT, jak wskazano na poniższym rysunku:

Struktury sieci obsługiwane przez urządzenia HT z serii 136K to TN-S, TN-C, TN-C-S, TT, IT, jak wskazano na poniższym schemacie:

Uwaga: w przypadku sieci o strukturze TT wartość skuteczna napięcia pomiędzy przewodem neutralnym a uziemiającym musi być poniżej 20 V.

3.3 Informacje o zawartości opakowania

Materiały tekstowe

[4]

 [1] Złącze DC*: 20 par do mocy 75 kW, 80 kW, 100 kW, 24 pary do mocy 73 kW, 110 kW, 120 kW, 136 kW.

[2] Moduł opcjonalny.

[3] Liczba akcesoriów może ulec zmianie bez wcześniejszego powiadomienia.

[4] Materiały tekstowe*: dołączone instrukcje.

3.4 Prezentacja wyglądu produktu

Po otwarciu opakowania należy sprawdzić, czy produkt jest zgodny ze specyfikacją zakupionego falownika. Wygląd produktu jest przedstawiony na schemacie. Wygląd portów falowników o różnej mocy może się różnić.

GW73KLV-HT/GW110K-HT/GW120K-HT/GW136K-HTH – widok z dołu

GW75K-HT/GW80K-HT/GW100K-HT – widok z dołu

Nr	Nazwa	Opis	
1	Przełącznik DC	Służy do bezpiecznego odłączania wejścia DC według potrzeb. Gdy wejście i wyjście spełnia wymagania, falownik uruchamia się automatycznie Przestawienie przełącznika DC w położenie "WYŁ." spowoduje natychmiastowe odcięcie wejścia DC. Przed uruchomieniem falownika należy ustawić przełącznik DC w położeniu "WŁ.".	
2	Złącze DC	Służy do podłączania stringów PV.	
3	Moduł komunikacyjny	unikacyjny Służy do podłączenia modułu komunikacyjnego, ab falownik mógł korzystać z odpowiedniej metody komunikacji.	
4	Port komunikacyjny RS485	5 Służy do podłączania monitoringu danych i innego sprzętu.	
5	Skrzynka elektryczna AC	Służy do podłączania przewodów AC.	
6 Instalacja wentylatora Służy do odprowadzania ciepła z falownika i w regularnego czyszczenia.		Służy do odprowadzania ciepła z falownika i wymaga regularnego czyszczenia.	
7	Uchwyt	Służy do przenoszenia falownika.	
8	Wspornik tylny do zawieszania	Służy do mocowania falownika do wspornika.	
9	Wskaźnik	Wyświetla informacje o stanie pracy falownika.	
10	Pierścień do podnoszenia, otwór do montażu uchwytu	Służy do instalacji pierścieni podnoszących i uchwytów do instalacji falownika.	
11	Port uziemienia	Służy do podłączania żyły uziemienia w celu uziemie- nia falownika.	
12	Przycisk	Służy do obsługi i konfigurowania falownika.	
13	Wyświetlacz LCD	Służy do przeglądania parametrów pracy falownika.	

4 Instalacja sprzętu

4.1 Instrukcje instalacji

- Wysokość instalacji powinna być równoległa do linii wzroku, aby ułatwić obsługę i konserwację.
- · Falownik musi być zainstalowany z dala od materiałów łatwopalnych i wybuchowych.
- Falownik musi być zainstalowany w miejscu o dużej sile sygnału, aby zapewnić, że nie ma silnych zakłóceń elektromagnetycznych ani przeszkód w pobliżu.
- Etykiety parametrów i tabliczki ostrzegawcze muszą być dobrze widoczne po zainstalowaniu falownika.
- Miejsce instalacji falownika powinno być wolne od promieni słonecznych, deszczu i śniegu.

4.2 Wybór miejsca instalacji

Przy wyborze miejsca instalacji urządzenia należy rozważyć, co następuje:

- · Sposób i miejsce instalacji muszą być dostosowane do masy i wielkości falownika.
- · Zamontować na stałej powierzchni lub wsporniku.
- Miejsce instalacji musi być dobrze wentylowane.
- Kąt nachylenia instalacji poziomej powinien być większy niż 10°, niedopuszczalne jest pochylanie jej na boki. Obszar okablowania powinien być skierowany w dół, a instalacja pozioma musi znajdować się na wysokości ponad 500 mm nad ziemią. Jeśli wspornik montażowy ma być zainstalowany poziomo, należy skontaktować się z obsługą klienta, aby uzyskać więcej informacji na temat wspornika.

• Aby zapewnić dobre odprowadzanie ciepła i łatwy demontaż, minimalna wolna przestrzeń wokół falownika nie może być mniejsza niż poniższe wartości, jak pokazano na poniższym rysunku.

4.3 Instalacja falownika

4.3.1 Procedura instalacji ściennej:

Krok 3: Zamontować uchwyty lub pierścienie do podnoszenia po obu stronach falownika.

Uchwyt jest opcjonalny. Podczas instalacji sprzętu należy upewnić się, że uchwyt jest pewnie zamocowany. Po zakończeniu instalacji zdjąć uchwyt i przechowywać go w odpowiednim miejscu.

Krok 4:

Metoda 1: Monterzy trzymają uchwyty i wieszają falownik na wsporniku. Metoda 2: Podnieść urządzenie w celu instalacji.

4.3.2 Procedury instalacji wspornika:

Krok 3: Zamontować uchwyty lub pierścienie do podnoszenia po obu stronach falownika. Uchwyt jest opcjonalny. Podczas instalacji sprzętu należy upewnić się, że uchwyt jest pewnie zamocowany. Po zakończeniu instalacji zdjąć uchwyt i przechowywać go w odpowiednim miejscu.

Krok 4:

Metoda 1: Monterzy trzymają uchwyty i wieszają falownik na wsporniku. Metoda 2: Podnieść urządzenie w celu instalacji.

4.4 Instalacja elektryczna

4.4.1 Podłączenie złączy AC

- 1. Zmierzyć napięcie i częstotliwość w punkcie podłączenia do sieci, aby upewnić się, że są one zgodne ze specyfikacją sieciową falownika.
- 2. Zaleca się dodanie wyłącznika obwodu lub bezpiecznika po stronie AC, którego specyfikacja powinna być większa niż 1,25-krotność prądu znamionowego wyjścia AC.
- 3. Przewód PE (przewód uziemiający) falownika musi być niezawodnie uziemiony.
- 4. Odłączyć wyłącznik obwodu lub bezpiecznik falownika i punkt przyłączeniowy sieci.
- 5. Zaleca się stosowanie przewodu miedzianego. W przypadku konieczności zastosowania drutu aluminiowego należy skonsultować się z producentem falownika.
- 6. Wykonaj poniższe kroki, aby podłączyć zasilanie i falownik.

Uwaga: Nie należy łączyć bloków miedzianych z przewodami aluminiowymi. W przeciwnym razie wystąpi korozja elektrochemiczna i sprzęt ulegnie uszkodzeniu.

- Do przewodów miedzianych należy stosować zaciski miedziane, a do przewodów aluminiowych zaciski miedziano-aluminiowe. Nie można bezpośrednio stosować zacisków aluminiowych.
- Po odizolowaniu przewodu należy zabezpieczyć odizolowaną część rurką termokurczliwą.

4.4.2 Wyłącznik obwodu AC i urządzenie zabezpieczające przed prądem upływowym

W celu umożliwienia bezpiecznego i niezawodnego odłączenia falownika od sieci elektroenergetycznej, i tym samym jego ochrony, należy zainstalować wyłącznik obwodu falownika.

Model falownika	Maks. prąd wyjściowy (A)	Specyfikacja zalecanego wyłącznika obwodu
GW75K-HT/GW80K-HT/GW100K-HT	167 A	200 A
GW110K-HT	184 A	250 A
GW73KLV-HT/GW120K-HT	191,3 A	250 A
GW136K-HTH	173,2 A	225 A

Uwaga: Kilka falowników nie może korzystać z tego samego wyłącznika obwodu.

Wewnętrzne urządzenie wykrywające prąd upływowy w falowniku może wykrywać zewnętrzny prąd upływowy w czasie rzeczywistym. Kiedy natężenie wykrytego prądu upływowego przekroczy ustaloną wartość graniczną, falownik zostanie natychmiast odłączony od sieci. Jeżeli zainstalowane jest zewnętrzne zabezpieczenie przed prądem upływowym, prąd zadziałania pojedynczego falownika powinien wynosić 1000 mA lub więcej.

4.4.1 Podłączenie złączy DC

1. Przed podłączeniem stringu PV należy upewnić się, że przełącznik DC jest wyłączony.

- 2. Upewnij się, że polaryzacja stringu PV jest zgodna ze złączem DC, w przeciwnym razie falownik zostanie uszkodzony.
- 3. Należy upewnić się, że maksymalne napięcie obwodu otwartego każdego stringu PV w żadnym wypadku nie jest wyższe niż maksymalne napięcie wejściowe falownika.
- 4. Należy użyć złącza DC dostarczonego przez naszą firmę.
- 5. Bieguny dodatni i ujemny stringu PV nie mogą być podłączone do żyły PE (żyła uziemiająca), w przeciwnym razie falownik zostanie uszkodzony.
- 6. Nieużywane złącze PV musi być niezawodnie odizolowane za pomocą wodoodpornych zatyczek.

Dostępne są cztery rodzaje złączy DC: seria DEVALAN, seria MC4, seria AMPHENOL H4, seria QC4.10.

podalo w tabeli polizej.					
A	В	Kod	Opis	Wartość	
· · · · · · · · · · · · · · · · · · ·	 ↓	A	Zewnętrzna średnica żyły	5,5 – 9 mm	
V		В	Przekrój poprzeczny przewodnika	2,5 – 6 mm²	
	C	С	Długość przewodu odizolowanego	Około 7 mm	

Krok 2: Wziąć złącze DC z opakowania akcesoriów, obrócić nakrętkę, aby je wyjąć i wyjąć wodoodporny gumowy pierścień.

Krok 4: Podłączyć przednią część przewodu DC do metalowego złącza i zacisnąć go specjalnym narzędziem do złączy DC.

Krok 6: Podłączyć przewodowe złącza DC do falownika w sposób przedstawiony na schemacie.

4.4.4 Zewnętrzne podłączenie do uziemienia

Zgodnie z wymogami normy EN50178 falownik musi być wyposażony w podłączenie do uziemienia ochronnego. Użytkownik musi podłączyć to złącze do przewodu uziemienia ochronnego podczas instalacji sprzęt. Aby dokonać podłączenie uziemienia, wykonać następujące czynności.

Krok 2: Włożyć odizolowany przewód do złącza i zacisnąć go mocno za pomocą szczypiec.

Krok 3: Aby poprawić odporność na korozję zacisku uziemiającego po zainstalowaniu przewodu uziemiającego, zaleca się nałożenie na złącze żelu krzemionkowego jako środka antykorozyjnego.

4.5 Instalacja funkcji komunikacji

4.5.1 Komunikacja przez interfejs RS485

Ta funkcja jest dostępna wyłącznie w modelach wyposażonych w interfejs RS485.

Port RS485 służy do podłączania rejestratora danych, a maksymalna całkowita długość przewodu połączeniowego nie powinna przekraczać 1000 m.

Przewody komunikacyjne muszą być ułożone z dala od przewodów energetycznych, aby unikać zakłóceń w komunikacji.

Metoda okablowania RS485 jest przedstawiona na schemacie.

W przypadku połączenia kilku falowników i podłączenia ich do rejestratora danych maksymalna liczba falowników połączonych szeregowo wynosi 60.

Wykonać podłączenie komunikacyjne RS485 zgodnie z poniższą procedurą.

Krok 2: Wybrać żyłę skrętki ekranowanej RS485 i zdjąć z niej izolację, jak pokazano na poniższym schemacie, następnie podłączyć złącze i mocno je zacisnąć.

Krok 3: Włożyć przewód skrętki ekranowanej RS485 przez złącze komunikacyjne, jak pokazano na poniższym schemacie, i podłączyć go do odpowiedniego portu zgodnie z kolejnością okablowania. Następnie zmontować złącza i dokręcić je.

Krok 4: połączenie złącza komunikacyjnego z portem COM2 falownika.

4.5.2 Komunikacja przez interfejs Wi-Fi

Ta opcja ma zastosowanie tylko w przypadku falowników z funkcją komunikacji Wi-Fi. Metodę instalacji modułu komunikacji Wi-Fi przedstawiono na schemacie poniżej.

Uwaga: Moduł komunikacyjny musi być dopasowany i umieszczony pionowo w złączu komunikacyjnym, w przeciwnym razie zarówno moduł, jak i złącze mogą ulec uszkodzeniu.

Po zakończeniu instalacji należy sprawdzić, czy wskaźnik na module jest włączony. Jeśli wskaźnik nie świeci, należy odłączyć moduł i zainstalować go ponownie.

Aby wyjąć moduł, operator musi użyć dostarczonego narzędzia odblokowującego. Bez użycia tego narzędzia moduł zostanie uszkodzony.

Uwaga: Jeśli monitor nie jest podłączony, siła sygnału może być zbyt niska.

4.5.3 Połączenie komunikacyjne z PLC 2.0

Uwaga:

- 1. Komunikacja z PLC 2.0 znajduje zastosowanie wyłącznie wtedy, gdy wyjście jest połączone z transformatorem;
- 2. Komunikacja PLC 2.0 wymaga skrzynki komunikacyjnej SCB3000.
- 3. Informacje na temat metod okablowania sterownika PLC można znaleźć w instrukcji SCB3000.

4.5.4 Monitoring przez chmurę

Po zakończeniu konfiguracji komunikacji należy zeskanować kod QR znajdujący się na odwrocie niniejszej instrukcji lub odwiedzić stronę www.sems.com.cn. Pobrać aplikację goodwe.cloudview i zakończyć rejestrację, aby korzystać z funkcji monitorowania przez chmurę.

4.6 Zdalne wyłączanie

Krok 1: Włożyć przewód skrętki ekranowanej zdalnego wyłączania do złącza komunikacyjnego, jak pokazano na poniższym schemacie, i podłączyć ją do odpowiedniego portu zgodnie z sekwencją okablowania. Następnie zmontować złącza i dokręcić je.

Krok 2: Podłączyć złącze zdalnego wyłączania do interfejsu COM3 falownika i dokręcić je.

5 Instrukcje obsługi

5.1 Opis wskaźników

Model bez wyświetlacza

Model z wyświetlaczem

🕛 Zielone światło 🕟 Zielone światło 🙆 Zielone światło 🛆 Czerwone światło

5.2 Opis ekranu wyświetlacza i przycisków

Uwaga: W przypadku falowników bez wyświetlacza należy zeskanować kod QR po lewej stronie, aby pobrać i zainstalować aplikację SolarGo, a następnie wykonać odpowiednie czynności konfiguracyjne w aplikacji.

Aplikacja SolarGo

Ustawienie przepisów bezpieczeństwa w danym kraju:

Jeśli na wyświetlaczu LCD pojawia się komunikat **"GW100K-HT Power = XXXXX watts"**, nacisnąć i przytrzymać przycisk przez 2 s, aby przejść do menu pierwszego poziomu **"China's max voltage"**. W menu drugiego poziomu należy wybrać odpowiedni kraj przepisów bezpieczeństwa w zależności od miejsca instalacji, a następnie odczekać 10 sekund po wybraniu kraju. Na urządzeniu pojawi się komunikat **"Setting up..."**. Dokończyć ustawienia. Zostanie wyświetlony komunikat: **"Setting is completed successfully"** (Ustawienia pomyślne) lub **"Setup failed"** (Błąd).

(1) Wyświetlacz jest przedstawiony z prawej strony

Wytwarzanie energii przy połączeniu z siecią Moc = XXXXX watów

(2) Opis wyświetlacza przedstawionego z prawej strony

1. wiersz: Pasek informacji o stanie:

* W pierwszym wierszu wyświetlane są informacje o stanie systemu. Komunikat **"Waiting for power generation power = 0 watts"** oznacza, że falownik jest w stanie czuwania;

Komunikat **"Detection timing **sec power = 0 watts"** wskazuje, że falownik przeprowadza samokontrolę i przygotowuje się do wytwarzania energii elektrycznej; komunikat **"grid-tie power generation power =XXXXX watts"** oznacza, że falownik jest w stanie wytwarzania energii; gdy w systemie wystąpi nieprawidłowy stan, zostanie wyświetlony komunikat o błędzie. Szczegółowe informacje podano w tabeli *5.3 Informacje o błędach*.

* Parametry pracy systemu można przełączać i wyświetlać na pasku stanu za pomocą przycisków. Przyciski umożliwiają przełączanie dwóch poziomów menu. Szczegóły przełączania zawartości i procedurę przedstawiono na schemacie z prawej strony:

* Do sterowania wyświetlaniem menu służą przyciski. Nacisnąć i przytrzymać przycisk, aby przejść do podmenu

2. wiersz: W tym miejscu wyświetlana jest informacja o mocy aktualnie wytwarzanej przez

falownik

(3) Opis przycisków

Przyciski można obsługiwać na dwa sposoby: przez krótkie naciśnięcie i długie naciśnięcie

(4) Szczegóły przycisków i ekranów LCD:

* Podstawowe funkcje, takie jak czas, język, kraj ustawień bezpieczeństwa itp. mogą być ustawione przez naciśnięcie przycisków.

* Obszar wyświetlania stanu na wyświetlaczu LCD jest podzielony na dwa poziomy menu. W niektórych menu pierwszego poziomu można wejść do menu drugiego poziomu przez długie naciśnięcie przycisku; jeśli nie ma menu drugiego poziomu, nacisnąć i przytrzymać przez 2 sekundy, aby zablokować bieżący interfejs wyświetlacza.

* We wszystkich menu system automatycznie powróci do pierwszej pozycji menu pierwszego poziomu po 20 sekundach, jeśli nie zostanie naciśnięty żaden przycisk.

(5) Wprowadzenie do menu

* Po włączeniu zasilania urządzenia domyślnie wyświetlane jest menu pierwszego poziomu.

* Wskaźnik stanu jest pierwszym menu w menu pierwszego poziomu, w którym wyświetlany jest aktualny stan urządzenia: W stanie początkowym po włączeniu wyświetlany jest komunikat "Waiting for power generation" (Oczekiwanie na produkcję energii). Jeśli urządzenie przejdzie w stan wytwarzania energii, zostanie wyświetlony komunikat "Grid tie power generation" (Wytwarzanie energii w połączeniu z siecią). Jeżeli urządzenie jest w stanie awarii, zostaną wyświetlone informacje o błędzie

* Nacisnąć krótko przycisk, aby przejść do pozycji napięcia wejściowego w menu, która służy do wyświetlania napięcia w instalacji fotowoltaicznej w woltach (V).

* Nacisnąć krótko przycisk, aby przejść do pozycji menu prądu wyjściowego, która służy do wyświetlania natężenia prądu w instalacji fotowoltaicznej w amperach (A).

* Nacisnąć krótko przycisk, aby przejść do pozycji napięcia sieciowego w menu, która służy do wyświetlania napięcia sieciowego w woltach (V).

* Nacisnąć krótko przycisk, aby przejść do pozycji menu "prąd wyjściowy", która służy do wyświetlania natężenia prądu wyjściowego w amperach (A).

* Nacisnąć krótko przycisk, aby przejść do pozycji menu "częstotliwość sieci", która służy do wyświetlania częstotliwości sieci w hercach (Hz).

* Sprawdzanie kodu błędu

Krótko nacisnąć przycisk raz, aby wejść do menu wyświetlania historii błędów, które służy do wyświetlania informacji o usterkach urządzenia. Nacisnąć i przytrzymać przycisk przez 2 sekundy, aby wejść do menu drugiego poziomu i wyświetlić pięć ostatnich komunikatów o błędach: Komunikat o błędzie, czas usterki (190520 15: 00). Aby wyjść z menu drugiego poziomu, należy nie naciskać przycisku przez 20 sekund. Podświetlenie wyświetlacza wyłączy się, a urządzenie automatycznie powróci do menu wyświetlania stanu w menu pierwszego poziomu.

* Sprawdzanie modelu

Naciśnij krótko raz przycisk, aby wejść do menu wyświetlacza "Model Name" (nazwa modelu) i wyświetlić nazwę modelu.

* Sprawdzanie wersji oprogramowania

Nacisnąć krótko przycisk, aby przejść do pozycji menu "Software version", która służy do wyświetlania bieżącej wersji oprogramowania, np.: **"Software version: V1.XX.XX.XX".** Jeśli żaden przycisk nie zostanie naciśnięty przez 20 sekund, podświetlenie wyświetlacza wyłączy się i urządzenie automatycznie powróci do menu stanu na pierwszym poziomie menu.

* Ustawienie czasu

Nacisnąć krótko przycisk, aby wejść do menu ustawień czasu systemowego, które służy do ustawiania aktualnego czasu urządzenia, a następnie przejść do menu drugiego poziomu naciskając długo przycisk przez 2 sekundy:

"2000-00 00:00" – pierwsza i druga cyfra pozostają domyślnie bez zmiany. Trzecia i czwarta cyfra służą do ustawienia roku (zakres ustawień 2000 – 2099). Piąta i szósta cyfra służą do ustawiania miesiąca. Siódma i ósma cyfra służą do ustawiania dnia. Dziewiąta i dziesiąta cyfra służą do ustawiania godzin, jedenasta i dwunasta – do ustawiania minut. Każdą cyfrę ustawia się

przez krótkie naciśnięcie przycisku. Aby przejść do następnej cyfry, nacisnąć i przytrzymać przycisk przez 2 sekundy. W przypadku przejścia na ekran drugiego poziomu bez dokonywania zmian i braku naciśnięcia przycisku w ciągu 20 sekund podświetlenie wyświetlacza wyłączy się i nastąpi automatyczny powrót do menu wyświetlania stanu na pierwszym poziomie. W przypadku wprowadzania zmian należy przejść do menu **"Setting up..."**, zostanie wyświetlony komunikat **"Setting is completed successfully"** (Ustawienie pomyślne) lub "Setup failed" (Niepowodzenie). Na koniec urządzenie automatycznie powróci do wyświetlania stanu w menu pierwszego poziomu.

* Ustawianie funkcji "Shadow MPPT" – optymalizacji pracy w cieniu.

Krótko nacisnąć przycisk raz, aby wejść do menu funkcji "Shadow MPPT", nacisnąć i przytrzymać przycisk przez 2 sekundy, aby włączyć lub wyłączyć funkcję Shadow MPPT.

Komunikat "Shadow mode OFF Power =XXXXX watts" wskazuje stan wyłączony. Komunikat

"Shadow mode ON Power =XXXXX watts" oznacza stan włączony.

(6) Normalne włączanie zasilania i wyświetlanie na ekranie roboczym

* Gdy napięcie wejściowe jest większe niż napięcie włączenia, urządzenie zaczyna pracować, a żółta kontrolka włącza się jako pierwsza. Po kilku sekundach na ekranie zaczną być wyświetlane następujące informacje:

"Grid loss Power =XXXXX watts". Jeśli w tym czasie dostępne jest zasilanie sieciowe, na wyświetlaczu pojawi się komunikat **"Detection timing **sec power = 0 watts".** W tym czasie odlicza się ** sek. Gdy liczba ta osiągnie 0, będzie można usłyszeć pracę przekaźnika, a następnie wyświetlony zostanie komunikat "grid-tie power generation", a w drugim wierszu wyświetlona zostanie aktualna moc urządzenia.

5.3 Informacje o błędach

Komunikaty o błędach przedstawione w poniższej tabeli będą wyświetlane na ekranie w przypadku wystąpienia nieprawidłowej sytuacji:

Komunikat o błędzie	Opis	
SPI Comm Fail	Błąd komunikacji wewnętrznej	
EEPROM Fail	Błąd odczytu/zapisu EEPROM	
Fac Fail	Błąd częstotliwości AC	
Relay Fail	Błąd kontroli przekaźnika	
PV** over Curr	Prąd sprzętowy PV** poza zakresem	
DCI High	Wysoki wprowadzany prąd DC	
Isolation Fail	Błąd izolacji	
Vac Fail	Błąd napięcia V AC	
ExFan Fail	Błąd wentylatora zewnętrznego	
PV Over Voltage	Zbyt wysokie napięcie PV	
Over Temperature	Zbyt wysoka temperatura	
InFan Fail	Błąd wentylatora wewnętrznego	
DC Bus High	Wysoki poziom szyny DC	
Gnd I Fail	Błąd uziemienia I	
Utility Loss	Utrata sieci	
Ref-V Chek Fail	Błąd kontroli napięcia odniesienia	
GFCI Failure	Błąd GFCI urządzenia	

6 Najczęściej zadawane pytania

W normalnych warunkach falownik nie wymaga konserwacji. Jeżeli falownik nie może działać prawidłowo, zobacz następujące instrukcje:

• Gdy wystąpi problem, włączy się czerwona kontrolka na panelu operacyjnym, a w aplikacji zostanie wyświetlona odpowiednia informacja. W poniższej tabeli przedstawiono szczegóły, a treść w nawiasach stanowi interpretację.

Тур	Typ Wyświetlacz Rozwiązywanie problemów					
	Isolation Failure	 Odłączyć przełącznik DC, wymontować złącze DC i zmierzyć impedancję między biegunem dodatnim i ujemnym złącza DC i uziemieniem. Jeżeli impedancja jest mniejsza niż 100 kΩ, sprawdzić izolację przewodów na stringu PV do uziemienia. Jeżeli impedancja jest wyższa niż 100 kΩ, wezwać lokalny serwis. Wymontować złącze AC i zmierzyć impedancję żyły N do żyły uziemienia. Jeżeli przekracza 10 Ω, sprawdzić okablowanie prądu zmiennego. 				
	Ground I Failure	 Odłączyć przełącznik DC i sprawdzić izolację połączenia stringu PV z uziemieniem. Po zakończeniu kontroli należy zamknąć przełącznik DC. Jeżeli problem utrzymuje się, skontaktować się z lokalnym serwisem. 				
Błąd systemu Vac Failure Fac Failure Błąd systemu Fac Failure Błąd Systemu Vac Failure Securation 1. Odłączyc neutral specyfik 2. Jeśli nie j 3. Jeżeli jes obwodu współpr skontak z siecią : 2. Jeśli częs falownik z siecią : 2. Jeżeli pro	 Odłączyć wyłącznik obwodu AC, wyjąć złącze AC, zmierzyć napięcie między przewodem pod napięciem a przewodem neutralnym w złączu i sprawdzić, czy jest ono zgodne ze specyfikacją dotyczącą współpracy falownika z siecią. Jeśli nie jest zgodne, sprawdzić żyły przewodu sieciowego. Jeżeli jest zgodne, podłączyć złącze AC i zamknąć wyłącznik obwodu AC. Falownik automatycznie wznowi tryb współpracy z siecią. Jeżeli problem utrzymuje się, skontaktować się z lokalnym serwisem. 					
	Fac Failure	 Jeśli częstotliwość sieci powróci do normalnego stanu, falownik automatycznie wznowi pracę w trybie współpracy z siecią zewnętrzną. Jeżeli problem utrzymuje się, skontaktować się z lokalnym serwisem. 				
	Utility Loss	 Odłączyć wyłącznik obwodu AC, wyjąć złącze AC, zmierzyć napięcie między przewodem pod napięciem a przewodem neutralnym w złączu i sprawdzić, czy jest ono zgodne ze specyfikacją dotyczącą współpracy falownika z siecią. Jeśli nie, sprawdzić, czy przełącznik rozdziału mocy jest zamknięty i czy zasilanie działa prawidłowo. Jeśli napięcie jest zgodne, podłączyć złącze AC i zamknąć wyłącznik obwodu AC; jeśli problem nadal występuje, wezwać lokalny serwis. 				
	PV Over Voltage	 Odłączyć przełącznik DC, wyjąć złącze DC i zmierzyć napięcie stringu PV. Sprawdzić, czy przekracza ono specyfikację napięcia wejściowego falownika. Jeśli tak, należy ponownie skonfigurować string PV. Jeśli nie, a problem utrzymuje się, skontaktować się z lokalnym serwisem. 				

Тур Wy-		Rozwiązywanie problemów	
	Relay Check Failure		
	DC Injection High		
Błąd falow-	EEPROM R/W Failure	1. Odłączyć przełącznik DC. 2. Zamknąć ponownie przełącznik DC.	
nika	Internal Communication Failure	3. Jeśli błąd wystąpi ponownie, należy wezwać lokalny serwis.	
	DC Bus High		
	GFCI Device Check Failure		
Inne błędy	Wyświetlacz nie działa (Wskaźnik i wyświetlacz nie są podświetlone)	 Odłączyć przełącznik DC, wyjąć złącze DC i zmierzyć napięcie stringu PV. Podłączyć złącze DC, a następnie zamknąć przełącznik DC. Jeżeli napięcie jest niższe od 200 V, sprawdzić konfigurację stringu PV. Jeżeli napięcie jest wyższe od 200 V i nadal nie ma reakcji wyświetlacza, należy wezwać lokalny serwis. 	

Uwaga: Gdy promienie słoneczne są niewystarczające, falownik fotowoltaiczny może się często uruchamiać. Jest to spowodowane niewystarczającą mocą stringu PV i nie powoduje uszkodzenia falownika.

7 Konserwacja produktu

Regularna konserwacja falownika zapewni jego trwałość i najlepszą wydajność.

Uwaga: Przed wykonaniem jakichkolwiek czynności konserwacyjnych należy wyłączyć wyłącznik obwodu AC, odłączyć wyłącznik obwodu DC i odczekać 5 minut, aż napięcie resztkowe zostanie uwolnione.

7.1 Czyszczenie wentylatora

Wentylator zewnętrzny falownika serii HT należy co roku oczyścić odkurzaczem. Wymontować wentylator i dokładnie go oczyścić.

- 1. Najpierw należy wyłączyć wyłącznik obwodu AC, a następnie wyłączyć przełącznik DC;
- 2. Odczekać 5 minut, aż napięcie resztkowe zostanie uwolnione i wentylator przestanie pracować;
- 3. Wymontować siatkę wentylatora;
 - Za pomocą śrubokręta poluzować wspornik wentylatora

Ostrożnie zdemontować siatkę wentylatora i wentylator (ponieważ obwód wewnętrzny wentylatora jest nadal połączony, nie należy wyciągać pojedynczego wentylatora), jak pokazano na poniższym schemacie;

4. Do czyszczenia użyć miękkiej szczotki, szmatki lub sprężonego powietrza; dokręcić śruby.

7.2 Kontrola przełącznika DC

W normalnych warunkach użytkowania przełącznik DC nie wymaga konserwacji.

Chociaż nie jest to ściśle konieczne, zalecamy:

- regularne sprawdzanie stanu przełącznika DC,
- \cdot włączanie i wyłączanie przełącznika DC 10 razy w roku.

Regularna obsługa przełącznika może oczyścić urządzenie i wydłużyć jego żywotność.

Uwaga: Najpierw należy wyłączyć przełącznik AC, a następnie wyłączyć przełącznik DC.

Sekwencja uruchamiania

- 1. Ustawić wyłącznik obwodu po stronie AC w pozycji "WŁ.";
- 2. Ustawić przełącznik DC falownika w pozycji "WŁ.".
- Sekwencja wyłączania
- 1. Ustawić wyłącznik obwodu po stronie AC w pozycji "WYŁ.";
- 2. Ustawić przełącznik DC falownika w pozycji "WYŁ.".

A Jeśli podane powyżej sekwencje uruchamiania i wyłączania nie będą ściśle przestrzegane, może dojść do uszkodzenia falownika.

7.3 Sprawdzenie podłączeń elektrycznych

- 1. Sprawdzić, czy podłączenie przewodu nie jest luźne;
- 2. Upewnić się, że przewód uziemiający jest prawidłowo uziemiony;
- 3. Sprawdzić, czy wodoodporne pokrywy złączy RS485, Wi-Fi i innych portów są prawidłowo zamknięte.
- Uwaga: konserwacja odbywa się raz na sześć miesięcy.

8 Dane techniczne

8.1 Specyfikacje produktu

Dane techniczne	GW100K-HT	GW110K-HT	GW120K-HT	GW136K-HTH	
Wejście					
Maks. moc wejściowa (kW)	150	165	180	205	
Maks. napięcie wejściowe (V)	1100	1100	1100	1100	
Zakres wejściowych napięć roboczych MPPT (V)	180 - 1000	180 - 1000	180 - 1000	180 - 1000	
Napięcie rozruchowe (V)	200	200	200	200	
Zakres napięć MPPT przy pełnym obciążeniu	500 - 850	500 - 850	500 - 850	500 - 850	
Nominalne napięcie wejściowe (V)	600	600	600	750	
Maks. prąd zwrotny do instalacji (A)	0	0	0	0	
Maks. prąd wejściowy na MPPT (A)	30	30	30	30	
Maks. prąd zwarciowy na MPPT (A)	45	45	45	45	
Liczba MPPT	10	12	12	12	
Liczba stringów na MPPT	2	2	2	2	
Wyjście					
Nominalna moc wyjściowa (kW)	100	110	120	136	
Maks. moc czynna AC (kW)	110	121	132	150	
Znamionowa moc pozorna (kVA)	100	110	120	135	
Maks. moc pozorna AC (kVA)	110	121	132	150	
Nominalne napięcie wyjściowe (V)	400, 3L/N/PE lub 3L/PE 500, 3L / P			500, 3L / PE	
Nominalna częstotliwość sieci AC (Hz)	50 / 60	50 / 60	50 / 60	50 / 60	
Maks. prąd wyjściowy (A)	167	175,5	191,3	173,2	
Maks. prąd zwarciowy wyjścia (szczytowy i czas trwania) (A)	364 przy 5 μs				
Prąd rozruchowy (szczytowy i czas trwania) (A)	120 przy 1 µs				
Współczynnik mocy wyjściowej	~1 (regulowany oc	d 0,8 wartości pojemn	ościowej do 0,8 warto	ości indukcyjnej)	
Maks. łączne zniekształcenia harmoniczne		<3%	5		
Wydajność					
Wydajność maksymalna	98,6%	98,6%	98,6%	99,0%	
Wydajność w Europie	98,3%	98,3%	98,3%	98,5%	
Zabezpieczenie		·			
Monitoring prądu stringu PV		Zinteg	rowane		
Wykrywanie wilgotności wewnętrznej		Zinteg	rowane		
Wykrywanie rezystancji izolacji DC		Zinteg	rowane		
Moduł monitorowania prądu resztkowego (RCMU)		Zinteg	rowane		
Zabezpieczenie od pracy wyspowej	Zintegrowane				
Zabezpieczenie przed odwrotną polaryzacją DC	Zintegrowane				
Ogranicznik przepięć DC	Typ II (Typ I opcjonalny)				
Ogranicznik przepięć AC	Typ II (Typ I opcjonalny)				
Zabezpieczenie nadprądowe AC	Zintegrowane				
Zabezpieczenie zwarciowe AC	Zintegrowane				
Zabezpieczenie przed zbyt wysokim napięciem AC	Zintegrowane				
Rozłącznik – ochrona przed zwarciem łukowym DC	 Opcjonalny				
Przywrócenie PID		Opcjo	onalny		
Dane ogólne					
Zakres temperatury roboczej (°C)	-30 - 60				
Wilgotność względna	0 – 100%				

Dane techniczne	GW100K-HT	GW110K-HT	GW120K-HT	GW136K-HTH
Dane ogólne				
Maks. wysokość pracy (m)	5000 (> 4000 obniżenie)			
Metoda chłodzenia		Chłodzenie wen	tylatorem Smart	
Wyświetlacz	L	ED (standard), LCD (op	cja), Bluetooth+aplikacja	a
Komunikacja		RS485 lub P	LC lub Wi-Fi	
Masa (kg)	93,5 98,5			
Wymiary (szer. × wys. × gł. mm)	, 1008 × 678 × 343			
Złącze DC	MC4 (maks. 6 mm ²)			
Złącze AC	Zacisk OT / DT (maks. 300 mm ²)			
Stopień ochrony	IP66			
Pobór energii w nocy (W)	<2			
Kategoria zabezpieczeń przed zbyt wysokim napięciem	PVII / AC III			
Klasa ochrony	I			
Emisja hałasu (dB)	<70			
Topologia	Bez transformatora			
Certyfikacja				
Standardy sieci	W colu uzyckania szczagółowych informacji proczo		10 I	
Przepisy bezpieczeństwa	odwiedzić strone internetowa			-y-
Kompatybilność elektromagnetyczna				

* W przypadku Australii nominalna moc wyjściowa i znamionowa moc pozorna: 99,99 kW / 99,99 kVA.

Dane techniczne	GW73KLV-HT	GW75K-HT	GW80K-HT	
Wejście				
Maks. moc wejściowa (kW)	112,5	112,5	120	
Maks. napięcie wejściowe (V)	800 1100		1100	
Zakres wejściowych napięć roboczych MPPT (V)	180 - 650 180 - 1000		180 - 1000	
Napięcie rozruchowe (V)	200 200		200	
Zakres napięć MPPT przy pełnym obciążeniu	250 - 650	500 - 850	500 - 850	
Nominalne napięcie wejściowe (V)	370	600	600	
Maks. prąd zwrotny do instalacji (A)	0	0	0	
Maks. prąd wejściowy na MPPT (A)	30	30	30	
Maks. prąd zwarciowy na MPPT (A)	45	45	45	
Liczba MPPT	12	10	10	
Liczba stringów na MPPT	2	2	2	
Wyjście				
Nominalna moc wyjściowa (kW)	73	75	80	
Maks. moc czynna AC (kW)	73 przy 220 V; 69 przy 208 V; 75 przy 230 V	75	88	
Znamionowa moc pozorna (kVA)	73	75	80	
Maks. moc pozorna AC (kVA)	75	75	88	
Nominalne napięcie wyjściowe (V)	220, 3L/N/PE lub 3L/PE	380 V / 400 V, 3L / N / PE lub 3L / PE	380 V / 400 V, 3L / N / PE lub 3L / PE	
Nominalna częstotliwość sieci AC (Hz)	50 / 60	50 / 60	50 / 60	
Maks. prąd wyjściowy (A)	192	125,3	134	
Maks. prąd zwarciowy wyjścia (szczytowy i czas trwania) (A)	364 przy 5 µs	364 przy 5 µs	364 przy 5 µs	
Prąd rozruchowy (szczytowy i czas trwania) (A)	120 przy 1 µs	120 przy 1 µs	120 przy 1 µs	
Współczynnik mocy wyjściowej	~1 (regulowany	od 0,8 wartości pojemnościowej	do 0,8 wartości	
Wyjściowy współczynnik zniekształceń harmonicznych (THDi, w porówn. z wart. nom.)	<3%	indukcyjnej)	<3%	
Wydajność		<3%		
Wydajność maksymalna	98,4%		98,6%	
Wydajność w Europie	98,1%	98,6%	98,3%	
Zabezpieczenie		98,3%		
Monitoring prądu stringu PV		Zintegrowane		
Wykrywanie wilgotności wewnętrznej		Zintegrowane		
Wykrywanie rezystancji izolacji DC		Zintegrowane		
Moduł monitorowania prądu resztkowego (RCMU)		Zintegrowane		
Zabezpieczenie od pracy wyspowej		Zintegrowane		
Zabezpieczenie przed odwrotną polaryzacją DC		Zintegrowane		
Ogranicznik przepięć DC		Typ II (Typ I opcjonalny)		
Ogranicznik przepięć AC		Typ II (Typ I opcjonalny)		
Zabezpieczenie nadprądowe AC	Zintegrowane			
Zabezpieczenie zwarciowe AC	Zintegrowane			
Zabezpieczenie przed zbyt wysokim napięciem AC	Zintegrowane			
Rozłącznik – ochrona przed zwarciem łukowym DC	Opcjonalny			
Przywrócenie PID	Opcjonalny			
Dane ogólne				
Zakres temperatury roboczej (°C)	- 30 - 60			
Wilgotność względna	0 - 100%			
Maks. wysokość pracy (m)	5000 (> 4000 obniżenie)			
Metoda chłodzenia	Chłodzenie wentylatorem Smart			
Wyświetlacz	LED (opcjonalnie LCD), Bluetooth+aplikacja			
Komunikacja	RS485 lub PLC lub Wi-Fi			
Masa (kg)	98,5 9		93,5	

Dane techniczne	GW73KLV-HT	GW75K-HT	GW80K-HT	
Dane ogólne				
Wymiary (szer.×wys.×gł. mm)	1008 × 678 × 343			
Złącze DC	MC4 (maks. 6 mm²)			
Złącze AC	Złącze OT/DT (maks. 300 mm ²)			
Stopień ochrony	IP66			
Pobór energii w nocy (W)	<2			
Kategoria zabezpieczeń przed zbyt wysokim napięciem	PVII/ACIII			
Klasa ochrony	Ι			
Emisja hałasu (dB)	<70			
Topologia	Bez transformatora			
Certyfikaty i standardy				
Standardy sieci				
Przepisy bezpieczeństwa	W celu uzyskania szczegółowych informacji proszę odwiedzić stronę internetową.			
Kompatybilność elektromagnetyczna				

* W przypadku Australii nominalna moc wyjściowa i znamionowa moc pozorna: 99,99 kW / 99,99 kVA.

Interpretacja poziomów zbyt wysokiego napięcia:

Jeśli napięcie robocze MPPT jest większe niż 850 V, moc wyjściowa AC zmniejsza się wraz ze wzrostem napięcia.

Poziom zbyt wysokiego napięcia I: Podłączyć produkt do obwodu wyposażonego w środki ograniczające chwilowe zbyt wysokie napięcie do względnie niskiego poziomu.

Poziom zbyt wysokiego napięcia II: Sprzęt zużywający energię zasilany przez stałe urządzenia rozdziału zasilania. Taki sprzęt obejmuje urządzenia, przenośne narzędzia i inne odbiorniki domowe i podobne. Jeżeli istnieją szczególne wymagania dotyczące niezawodności i możliwości zastosowania takiego sprzętu, przyjmuje się III poziom zbyt wysokiego napięcia.

Poziom zbyt wysokiego napięcia III: Niezawodność i możliwość zastosowania sprzętu w stałych urządzeniach rozdziału zasilania musi spełniać szczególne wymagania, w tym dotyczące aparatury łączeniowej w stałych urządzeniach rozdziału zasilania oraz urządzeń przemysłowych na stałe podłączonych do stałych urządzeń rozdziału zasilania.

Poziom zbyt wysokiego napięcia IV: Sprzęt używany w zasilaniu urządzenia rozdziału zasilania, w tym przyrządy pomiarowe i wstępnie rozmieszczone urządzenia ochrony nadprądowej itp.

Interpretacja wilgotności

Parametry	Poziom			
środowiskowe	3K3	4K2	4K4H	
Zakres temperatury	0°C – +40°C	-33°C – +40°C	-20°C – +55°C	
Zakres wilgotności	5% do 85%	15% do 100%	4% do 100%	

Interpretacja poziomów środowiskowych:

Falownik zewnętrzny: Zakres temperatury powietrza otoczenia -25°C do +60°C odpowiedni do środowiska o poziomie zanieczyszczenia 3;

Falownik wewnętrzny typu II: Zakres temperatury powietrza otoczenia -25°C do +40°C odpowiedni do środowiska o poziomie zanieczyszczenia 3;

Falownik wewnętrzny typu I: Zakres temperatury powietrza otoczenia 0°C do +40°C odpowiedni do środowiska o poziomie zanieczyszczenia 2;

Interpretacja poziomów zanieczyszczenia

1. poziom zanieczyszczenia: Brak zanieczyszczeń lub występują tylko suche zanieczyszczenia nieprzewodzące prądu.

2. poziom zanieczyszczenia: Zazwyczaj występują tylko zanieczyszczenie nieprzewodzące, ale mogą wystąpić przejściowe zanieczyszczenia przewodzące spowodowane kondensacją;

3. poziom zanieczyszczenia: Występują zanieczyszczenia przewodzące lub zanieczyszczenia nieprzewodzące stają się zanieczyszczeniami przewodzącymi w wyniku kondensacji;

4. poziom zanieczyszczenia: Występują trwałe zanieczyszczenia przewodzące, w tym zanieczyszczenia przewodzące w postaci pyłu lub deszczu i śniegu.

8.2 Schemat obwodu głównego

Obwód główny urządzenia GW75K-HT/GW80K-HT/GW100K-HT przedstawiono na poniższym schemacie:

Obwód główny urządzenia GW136K-HTH przedstawiono na poniższym schemacie:

